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Abstract
This review (with 154 refs.) describes the current status of using molecularly imprinted polymers in the extraction and quanti-
tation of illicit drugs and additives. The review starts with an introduction into some synthesis methods (lump MIPs, spherical
MIPs, surface imprinting) of MIPs using illicit drugs and additives as templates. The next section covers applications, with
subsections on the detection of illegal additives in food, of doping in sports, and of illicit addictive drugs. A particular focus is
directed towards current limitations and challenges, on the optimization of methods for preparation of MIPs, their applicability to
aqueous samples, the leakage of template molecules, and the identification of the best balance between adsorption capacity and
selectivity factor. At last, the need for convincing characterization methods, the lack of uniform parameters for defining selec-
tivity, and the merits and demerits of MIPs prepared using nanomaterials are addressed. Strategies are suggested to solve existing
problems, and future developments are discussed with respect to a more widespread use in relevant fields.
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Introduction

Illegal drugs are defined as drugs that are not related to the
purpose of medical treatment, prevention and health care.
Illegal drugs have been prohibited by regulations of the state
administration because they are believed to present unaccept-
able risks of addiction to users [1]. Illegal drugs include illicit
drugs and doping agents as used in sports. Illicit drugs are
addicted pharmaceutical drugs generally which can cause
mental disorder or irritability and lead to a series of abnormal
behavior [2, 3]. The use of illegal psychoactive drugs is com-
monplace in many parts of the world, and this phenomenon

seems to be widespread and may be increasing [4–6]. Doping
in sports are drugs that athletes take to improve performance
in competition [7, 8]. Illegal food additives refer to the non-
food substances which are prohibited in human food. The
harm of illicit drugs which pose a threat to human survival
and development has spread to food safety, sports, medical
and health field, becoming a globalization problem.
Considering that illegal drugs have developed rapidly, detec-
tion of illicit drugs in the human body and illegal additives in
food has become a priority. However, there exist some prob-
lems such as complicated composition, low quantity, serious
matrix interference, high labor intensity and poor selectivity in
the enrichment and detection of illicit drugs and additives.
Hence the traditional extraction materials and analysis
methods have been unable to meet the actual needs. To over-
come these obstacles, we require new high selectivity mate-
rials and rapid analysis method which can simplify sample
pretreatment steps, improve the detection sensitivity and real-
ize the automatic detection.

Molecular imprinting [9] is a method for creating, in a
polymer matrix, an imprinted cavity that has a shape matched
to a template molecule. The concept of molecular imprinting
appeared due to the development of molecular immunology
antibody formation theory proposed by L. Pauling, whose
history can be traced back to the 1940s [10]. The recognition
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of MIPs mainly imitates the biological processes such as
ligand-receptor binding, substrate-enzyme reactions and
translation and transcription of the genetic code. Molecularly
imprinted polymers (MIPs) are obtained by assembly of a
cross-linked polymer matrix around a template molecule that
is held in dispersive medium, either covalently or non-cova-
lently, by judiciously chosen functional monomer, and subse-
quent removal of the template molecular from the prepared
polymer matrix produces a molecularly imprinted cavity with
a shape matched to the template molecule. In the final MIPs,
the imprint cavity remains when the imprint molecule is
removed, and is able to interact with template molecular
or the molecular that as same as the template through any
combination of size, shape, and functional group matching.
Fig. S1 shows the principle of molecularly imprinting poly-
mers [11].

The Molecular Imprinting Organization was established
at Lund University in 1997. Ever since, molecular imprint-
ing has become one of the most impressive materials with
high selectivity and high concentration [12]. Owing to their
advantages, MIPs have been widely utilized as molecular
recognition and separation materials in different fields par-
ticularly as selective adsorbents for solid-phase extraction
(SPE) [13–17], chromatographic [18–22] and chemical
sensor [23–28]. As technology progresses, MIPs gradually
have also become essential for determination of illicit drugs
and additives [29–34]. Fig. 1 shows the timeline of the
advances in MIPs used for detection of illicit drugs.

In all analytical methods of detecting illicit drugs and ad-
ditives, MIPs possess incomparable superiority relative to tra-
ditional analysis methods. Firstly, the content of illegal drugs
is usually too low to be detected by traditional analysis
methods, while this requirement can be achieved with help
of MIPs. Secondly, due to high matrix interferences of some
complex samples, severe masking caused by components
existing in the form of compounds, and interfering effects of
protein substances on the detection of illegal drugs, there is a
pressing need for an enrichment method with high selectivity
and a highly sensitive detection method likeMIPs. Otherwise,
it is extremely apt to result in missed and false detection [57].
Thirdly, with the continual development of illegal drugs, a
wide variety of illicit drugs and additives have appeared on
the market. For example, because of the increasing supervi-
sion to clenbuterol hydrochloride, the structural analogue,
ractopamine has been used as succedaneum of clenbuterol
hydrochloride. Therefore, the single detection method de-
signed for a single drug cannot overcome its limitations.
Due to the procedure of metabolism and elimination, the con-
tent of the prototype drug decreases gradually until it fails to
be detected. There is an urgent need for a multi-sample and
multi-index identification and detection system [58] to simul-
taneously enrich the prototype drug and its metabolin. The
specific cavities and action sites of MIPs can realize the

simultaneous enrichment of some illegal drugs, their structural
analogues and metabolin.

Although MIPs enjoy significant benefits in detecting ille-
gal drugs and additives, they confront many challenges such
as the lack of convenient preparation methods, template leak-
age, the recognition in aqueous environment, the balance of
adsorption capacity and selectivity factor, lack of convincing
characterization methods, absence of uniform parameters for
selectivity and so on. In this article, we give a comprehensive
overview of the advances in MIPs used for detection of illicit
drugs, which covers the main approaches to the design, syn-
thesis, characterization and application of MIPs in the deter-
mination of illicit drugs. Furthermore, we place more empha-
sis on the challenges and existing solutions in the field of
molecularly imprinted polymers for the detection of illicit
drugs.

Polymerization method of MIPs using illicit
drugs and additives as templates

Free-radical polymerization is that the monomer by means
of light, heat, radiation and initiator agent forms active
radicals and then polymerization of monomers forms a
chemical reaction chain polymer. Owing to its advantages
of mild reaction conditions, tolerant of functional groups
in the monomers and impurities in the system and fast
response,free-radical polymerization is widely used in
synthesis of MIPs.

Blomgren et al. [60] prepared a MIP by radical polymeri-
zation using brombuterol, a structural analogue of clenbuterol
as the template for the extraction of clenbuterol from calf urine
samples. Compared with the non-imprinted polymer, the MIP
has higher selectivity for clenbuterol. The result shows that the
MIP coupled with HPLC–UV is superior to routine analytical
methods in bioanalysis at trace levels. Harun et al. [61] syn-
thesized an anti-ketamine MIP by free radical polymerization
for solid-phase extraction and isolation of ketamine and
norketamine from human hair extracts prior to LC-MS/MS
analysis. The MIP columns can simultaneously detect keta-
mine and its main metabolite, norketamine and a range of
different pH and solvent conditions are unaffected for the
performance of MIPs.

So far, MIPs synthesis methods mainly are bulk polymer-
ization, in-situ polymerization, suspension polymerization
and surface imprinting free radical polymerization as the basic
principles.

�Fig. 1 Timeline showing the advances in MIPs used for detection
of illicit drugs and additives in the literature. Reproduced from
Refs. [35–59]
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Lump MIP synthesis

Lump MIP synthesis refers to that the MIP prepared by this
method has no fixed shape and stacks together without rules.
This method includes bulk polymerization and In-situ poly-
merization. Because of the roughness, theMIP forms irregular
shapes and has large specific surface area.

Bulk polymerization, which is also known as mass poly-
merization, is the most conventional method for preparing
MIPs due to its attractive properties, such as simple operation
and low production costs. This method generally is dissolving
the template molecule, functional monomer, crosslinking
agent and initiator in accordance with a certain proportion in
an inert solvent, and then adding initiator to initiate the reac-
tion. After crushing, grinding, sieving and other processes, the
molecule with desired particle size is obtained. Although the
MIPs prepared by bulk polymerization provide adequate se-
lectivity, there are still some shortcomings including time-
consuming preparation procedure, low-affinity binding, high
diffusion barrier, low-rate mass transfer, and poor site
accessibility.

In-situ polymerization means that monomers are filled into
the interlayer and polymerization occurs between the layers.
In-situ polymerization is generally pouring polymerization
mixture solution into an empty column or capillary firstly
and then ending with a plug. After initiated at a certain time,
column or capillary will be connected to the column or capil-
lary chromatography or electrophoresis. When the template is
washed out, the MIP column or MIP capillary can be used
directly in chromatographic or electrophoretic separation.
This method greatly simplifies the experimental process be-
cause they are prepared and packed in one step. However, the
suitable porogen which is added to make the column with
good permeability can form hydrogen bonds between the
porogen and functional monomers and influence the hydrogen
formed between template and functional monomer, thus the
affinity and selectivity of MIPs decrease. Furthermore, the
degree of in-situ polymerization reaction is difficult to control.

A. Sorribes-Soriano et al. [62] prepared a cocaine-based
MIP using bulk polymerization for solid-phase extraction of
cocaine in saliva samples by ion mobility spectrometry. The
result of MIP coupled with ion mobility spectrometry is com-
parable to that of a confirmatory gas chromatography-mass
spectrometry method statistically, indicating that MIP-IMS is
a practical choice of immunoassay procedures to screen co-
caine in biological fluids. Kaisong Yuan et al. [63] sensitively
determined rose bengal in brown sugar by molecularly
imprinted solid-phase extraction (MISPE) coupled with cap-
illary electrophoresis laser-induced fluorescence detection.
The rose bengal imprinted monolithic column prepared by
in-situ polymerization shows higher specificity, recognition
ability, recovery and stability than HPLC and capillary elec-
trophoresis coupled with traditional SPE. The comparison of

SEM images ofMIPs synthesized by twomethods is shown in
Fig. 2. As shown in Fig. 2A and 2B, A. Sorribes-Soriano et
al.[62] produced cocaine MIPs and Zhengzhong Lin et al.[65]
synthesized malachite green MIPs by bulk polymerization.
They are both in the form of small globules. As shown in
Fig. 2C and 2D, Haiyun Zhai et al.[63] prepared rhodamine
B MIPs and Ting Du et al.[66] synthesized difenoconazole
MIPs by in-situ polymerization. Compared with bulk poly-
merization, the MIPs prepared by in-situ polymerization are
rounded, beaded and filled in the glass capillary.

Spherical MIP synthesis method

Spherical MIP synthetic method is a MIP synthetic method
that the MIP has regular spherical shape and a particle size
within a certain range, including precipitation polymerization,
suspension polymerization and emulsion polymerization.
Table 1 compares the three spherical MIP synthesis methods.

Precipitation polymerization uses a polymerization reac-
tion to form a polymer in an organic solvent and the occur-
rence of polymer phase separation, and the resulting precipi-
tates are nearly spherical MIPs. In this approach, polymeriza-
tion takes place in a large excess of an organic solvent (where
the monomers are soluble, but the resulting polymer is not), at
monomer concentrations typically in the range of 2–5% (w/v).
In such conditions, the polymer nuclei formed by aggregation
of highly cross-linked oligomer radicals do not overlap or
coalescence but continue to grow individually by capturing
new oligomers in this diluted reaction system. The growing
polymer has little affinity for the surrounding solvent and
phase separation occurs, and nonporous polymer micro-
spheres are obtained. Zhongcan Zhang et al. [69] prepared
MIPs by precipitation polymerization for selective extraction
of melamine in daily products. When 7.48 mmol crosslinker
was used, the perfect microspheres were obtained. According
to theMIPs images, it is evident that theMIPmicrospheres are
rather homogeneous with no significant aggregation. Peilong
Wang et al. [67] synthesized molecularly imprinted polymer
microspheres by precipitation polymerization for the treat-
ment of pork samples to detect clenbuterol and other β-ago-
nists. The results indicate that the method coupled with ultra-
performance chromatography coupled tandem mass spec-
trometry detection offers high recoveries, low detection limit
and good repeatability, providing a reliable method of deter-
mining β-agonists in real pork tissue samples.

Suspension polymerization is one method for preparing
polymer microsphere. The monomers used in suspension po-
lymerization are usually hydrophobic and dispersed phase is
usually water or highly polar organic solvent. Because of the
shortcomings of the MIP synthesized by suspension polymer-
ization, it is difficult to prepare MIPs by conventional aqueous
suspension polymerization process. But there are some reports
of the success of suspension polymerization. Zi-Ru Lian et al.
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[68] used caffeine as the dummy template molecule and poly-
vinyl alcohol as the dispersive reagent in water to prepare
MIPs as a selective sorbent for the solid-phase extraction of
gonyautoxins 2,3. The MISPE can eliminate the influence of
interference matrix in the extract. Hongyuan Yan et al. [70]
prepared new ionic liquid modified dummy molecularly
imprinted microspheres by aqueous suspension polymeriza-
tion as the sorbent of solid-phase extraction to detect clenbu-
terol and clorprenaline in urine. The molecularly imprinted
microspheres were synthesized using phenylephrine as dum-
my template and 1-allyl-3-ethylimidazolium bromide as co-
functional monomer. According to the results, the ionic liquid
modified polymers have regular shapes, high adsorption ca-
pacity and mechanical strength, which brings about high se-
lectivity and adsorbability to clenbuterol and clorprenaline
and avoids the effect of template leakage on quantitative
analysis.

The emulsion polymerization is another method for prepar-
ing theMIPs microspheres. The template molecule, functional
monomer and crosslinking agent are dissolved in an organic
solvent, and typically a certain amount of surfactant is added.
Then this solution is transferred into water for stir and emul-
sification, and polymerization occurs by adding the initiator.
Compared to precipitation polymerization, it usually requires
a larger number of chemicals including surfactants, buffer
components and stabilizers which have to be removed after

the synthesis, making washing procedures more sophisticated
and sometimes reducing the purity of MIPs.

A so-called Pickering emulsion is an emulsion stabilized
by solid particles. It was firstly described by Pickering in
1907. As reported previously, the emulsion type (O/W or
W/O) and droplet sizes of Pickering emulsion can be easily
controlled by adjusting the hydrophilic–hydrophobic proper-
ties and mass concentration of the used solid particles.
Pickering emulsion polymerization, a promising alternative
for preparing desiredMIPmaterials for SPE applications, ben-
efits from their advantages of simplicity, high yields of poly-
mer and good control of final particle size. Li et al. [71] pre-
paredMIPs by emulsion polymerization for extraction of mal-
achite green in fish. The MIP particles were synthesized using
MAA as functional monomer, EGDMA as cross-linker, and a
combination of Span-80 and Tween-80 as an emulsifier. The
detection method based onMIPs is successfully established to
selectively analyze malachite green residue in fish samples.

Surface imprinting

Surface imprinting has increasingly attracted the most atten-
tion in the field of molecular imprinting because its advan-
tages overcome the traditional shortcomings of MIPs slow
mass transfer and increase the uniformity of the binding site.
Surface imprinting technique and technology continue to be

Fig. 2 The SEM images of MIPs
synthesized by two methods. a
cocaine MIP synthesized by bulk
polymerization [62]; (b)
malachite green MIP synthesized
by bulk polymerization [64]; (c)
rose bengal MIP synthesized by
in-situ polymerization [63]; (d)
difenoconazole MIP synthesized
by in-situ polymerization [65]
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innovative and grow to maturity. Surface molecular imprint-
ing creates recognition sites on the surface of the matrix ma-
terial to increase the bonding speed of imprinting molecular
recognition site, more suitable for solid-phase extraction and
the stationary phase packing. Moreover, the matrix materials
have considerable mechanical stability and different MIPs
needed can be achieved by adjusting the matrix material itself.
However, due to the incomplete or uneven coating of matrix
materials, surface imprinting may have higher nonspecific ad-
sorption than conventional imprinting methods.

Generally surface imprinting is divided into two methods,
the traditional surface imprinting and hollow imprinting.
Traditional surface imprinting includes modified imprinting
surface method, and imprinted sites strictly controlled in
MIPs surface method. The general process of modified im-
printing surface method is that template molecule and func-
t i ona l monome r a r e d i s so l v ed in po rogen fo r
prepolymerization, and then this pre-polymer is grafted onto
the matrix materials treated with surface activation, such as
silica, polymer particles, glass, and carbon nanotubes. Fangdi
Wei et al. [72] anchored MIPs on the surfaces of two different
color quantum dots (QDs) to simultaneously detect norepi-
nephrine and epinephrine. Two kinds of QDs@MIPs were
both synthesized by the surface modification method. The

process of imprinting on the surface of QDs is shown in Fig.
S2. With good dispersibility, uniform morphology, high selec-
tivity and binding affinity, the QDs@MIPs can realize simul-
taneous detection of norepinephrine and epinephrine.

As the concept of the hollow MIPs was proposed, the sin-
gle hole hollow capsules were first synthesized in 2007 [73].
Like previous surface imprinting, hollow imprinting methods
also enjoy the advantages of high selectivity, high stability to
harsh chemical and physical conditions, and excellent reus-
ability. In addition, the controllable hole structure of hollow
polymers favors faster mass transfer. Qi Zhao et al. [74] pre-
pared single-hole hollow molecularly imprinted microspheres
to extract triazine pesticides in cereal samples. They used car-
boxylated polystyrene particles as the core. The process of
synthesizing the MIP is shown in Fig. S3. The results indicate
the specific surface area and binding capacity of MIPs pre-
pared by hollow imprinting are superior to those of MIPs
prepared by precipitation polymerization and surface
imprinting.

But the hollow imprinting has obvious shortcomings. The
MIP shell has to be thick because the polymer outside is easy
to collapse and break when dissolving and removal of the soft
core. However, the thick imprinting shell leads to a low mass
transfer and low utilization ratio of the binding sites. Dong

Table 1 The comparison of three common spherical MIP synthesis methods

Spherical MIP 
synthesis 
method

Particle size Initiator Advantage Disadvantage SEM image R ef.

Precipitation 
polymerization

wide
particle size 
distribution

no special 
requirement 

1 quick, straightforward 
and cheap 
2 mono-disperse 
spherical polymer 
particles in high yield and 
purity.

1 higher cost 
2 environmental hazard

[67]

Suspension 
polymerization

micron 
grade,
uniform-
sized 
particle

oil-soluble
initiator

1 most convenient
2 most common

1 Highly polar solvents 
will affect the selectivity 
of the polymer to the 
template.
2 Hydrophilic acidic 
monomer cause the no 
rules copolymerization 
difficult.
3 water-soluble 
molecular imprinting 
will loss

[68]

Emulsion 
polymerization

nanometer 
grade,
uniform-
sized
particle

water-soluble
initiator

1 Sizes uniform
2 Exhibit imprinted 
surfaces with improved 
binding site homogeneity 
and accessibility

1 Large variability in the 
particle size.
2 Poor purity

[14]
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Ren et al. [75] developed a new approach to the preparation of
hollowMIPs with thin and solid shells.With polystyrene/SiO2

particles as the core, only the polystyrene part was sacrificed,
and the SiO2 part was kept in the hollow MIPs as the support
to make it possible to get a thin but solid MIP shell. This
method not only avoids deformation and breaking but in-
creases the surface area of matrix materials.

Free-radical polymerization cannot stay in an intermediate
stage and cannot separate the stable product, and thus the
particle size of the MIP is heterogeneity. Many efforts have
been devoted to addressing this issue in the past years and
some progress has been made in this field [76–79].
Controlled radical polymerization (CRP) is defined as the pro-
cess that the balance between growth radicals and various
dormant species is used for controlling polymer molecular
weight, the distribution of molecular weight and terminal
functional groups in radical polymerization system. The
CRP includes iniferter, stable free radical polymerization, at-
om transfer radical polymerization and reversible addition
fragmentation chain transfer polymerization. The advantage
of CRP is that the molecular weight of the polymer, end-
group functionalization, molecular weight distribution, three-
dimensional structure, block copolymers and graft copoly-
mers can be controlled which exactly solves the problemmen-
tioned above. But its disadvantages of harsh polymerization
conditions and polarity sensitive groups limit the wide range
of applications.

As a CRP, atom transfer radical polymerization (ATRP) has
been a popular method to graft polymer brushes because of the
wide applicability of monomers, good compatibility of func-
tional groups and excellent controllability for product molec-
ular weight and dispersity. Yongliang Liu et al. [80] prepared
surface molecularly imprinted Fe3O4@MIP nanoparticles by
surface initiated ATRP to selectively enrich pefloxacin mesy-
late in egg samples. The overall preparation of Fe3O4@MIP
nanoparticles is shown in Fig. S4. Due to the advantages of
specific recognition and high affinity for pefloxacin mesylate
in aqueous media, the Fe3O4@MIP nanoparticles are proved
to be effective in concentrating pefloxacin mesylate from real
samples.

Application

MIPs usually act as a vehicle for preconcentration and sepa-
ration of samples, which is widely used in the detection of
trace compounds, such as stimulants, environmental pollut-
ants, food additives, etc. In the last years, MIPs have been
shown to be effective in such areas, therefore the relevant
articles have been increasing in quantities. The great potential
applications of MIPs utilized for sample separation are sum-
marized in Ref. [81–113], where the application ofMIPs in the
detection of illicit drugs is enumerated in particular. Tables 2,

3 and 4 summarize the highlighted applications of MIPs pre-
pared by different polymerization processes as the separation
media for the determination of various illegal additives in
food, doping in sports and illicit addictive drugs, respectively.
A variety of trace compounds are extracted from different
samples for detection, such as tetracycline antibiotics, mala-
chite green, clenbuterol, triamterene, testosterone, morphine,
methamphetamine and so on.

The detection of illegal additives in food

In accordance with law, use of illegal food additives shall be
prohibited in human food as a result of the fact that these non-
food substances pose a great threat to human health. The β-
agonist ractopamine and azo dye basic orange II are both
classified as illegal food additives when they are used in food.

Compared with traditional sensor detection methods for
determination of trace compounds which are hard to avoid
the interference of analogs, MIPs developed as imprinted
sensing membrane coupled with sensor measurement technol-
ogy may improve the detection efficiency. Hongcai Zhang
et al. [114] prepared a novel amperometric sensor based on
screen-printed electrode modified with multi-walled carbon
nanotubes (MWCNT) and molecularly imprinted membranes
(MIM) for the determination of ractopamine in pig urine. Fig.
S5 shows a scheme of screen-printed electrode modified with
MWCNT and MIM. The MIMs were prepared on the screen-
printed electrodes via in-situ thermal polymerization, and the
electrodes were modified with MWCNT beforehand. Helped
by the replacement of new screen-printed electrodes modified
with MWCNT-MIM, it is convenient to realize multiple or
successive determination of ractopamine.

Solid-phase extraction is the most widely used pretreat-
ment technology at present. However, the traditional sorbents
such as bonded silica gel, ion exchange resin are lack of
enough selectivity. MIPs as a novel sorbent with high selec-
tivity can be applicable for solid-phase extraction. Xiaoyan Li
et al. [115] developed a novel MIP with modified rosin as a
cross-linker for the determination of basic orange II in food.
The synthesized MIPs possess a highly imprinting capacity
and significant selectivity in comparison with those prepared
by traditional cross-linkers.

The detection of doping in sports

There are many examples of domestic and international ath-
letes taking punishment because of taking illegal drugs.
Common illegal drugs are about 100 kinds which can be di-
vided into the following seven categories, including analge-
sics, tranquilizers, stimulants, anabolic steroids, peptide hor-
mones, thiazide diuretics and aldosterone drugs, masking
agents and β- blockers.
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In comparison to different nonspecific extraction methods,
the selective extraction based on MIPs tends to be more pre-
cise. Testosterone is the primary male sex hormone. Due to its
anabolic effects that lead to increases in muscle mass and
strength, it is often illegally used to enhance athletic perfor-
mance in sports. Bernadette Tse Sum Bui et al. [116] prepared
MIP, with methyltestosterone as template, to clean up the hy-
drolyzed urine samples for quantification of testosterone via
LC-MS/MS. After a one-step extraction on theMIP, a solution
containing 2 ng mL−1 testosterone can be obtained, which
meets the conditions set by the World Anti-Doping Agency
for the minimum required performance limits for doping con-
trols, between 2 and 10 ng mL−1.

β-blockers have a relaxing effect on muscle function,
which are known as an illegal, performance-enhancement
drug for athletes. Sonla Morante-Zarcero et al. [117] devel-
oped a new method based on a new polysaccharide-based
stationary phase by MIP extraction, to detect the four pairs
of β-blockers simultaneously by HPLC, including proprano-
lol, metoprolol, pindolol, and atenolol. The MIP-SPE-HPLC-
UV method shows the advantages of good linearity, selectiv-
ity, precision and sensitivity.

The detection of illicit addictive drugs

Drugs refer to the narcotic and psychotropic substances which
can lead to drug addiction, such as opium, heroin, metham-
phetamine, morphine, marijuana, cocaine and so on. Drugs are
usually divided into two categories of narcotic drugs and

psychotropic drugs, the most commonly including marijuana,
opium and cocaine in narcotic drugs. Cocaine is taken as an
example to compare the LOD and LOQ of the determination
of cocaine by different methods which is shown in Table 5.

Coupled with sensor technologies, MIPs can also be
installed on the carbon paste electrode to form a novel elec-
trode for specificity identification. Caffeine is an alkaloid
causing many physiological effects including stimulation of
the central nervous and cardiovascular systems. Taher
Alizadeh et al. [133] 7prepared a novel voltammetric sensor
for the determination of caffeine based on MIT. They embed-
ded the caffeine-selective MIP in the carbon paste electrode to
recognize caffeine selectively and prepare for the caffeine pre-
concentration. Compared to NIP carbon paste, the electrode
has the capacity to identify caffeine precisely.

Solid-phase microextraction (SPME), whose principle is
different from solid-phase extraction, is utilized for pretreat-
ment and can achieve ultratrace analysis associated with
HPLC or GC. Methamphetamine is a central nervous system
stimulant producing the feelings of euphoria, hallucinations,
wakefulness and inappetence which may result in agitation
and violence. Djavanshir Djozan et al. [134] synthesized a
monolithic solid-phase microextraction fiber on basis of a
MIP by gas chromatography to extract, pre-concentrate and
detect methamphetamine. The fabricated fiber possesses the
advantages of good firmness, stability and durability, high
selectivity and great recognition ability. The result shows the
fiber is compatible with for determination of methamphet-
amine from human saliva samples.

Table 5 The LOD and LOQ of the determination of cocaine by different methods

Method LOD LOQ IF Sample Ref.

LC-MS/MS 3 ng mol−1 5 ng mol−1 3.436 whole blood [118]

Label-free DNA hairpin biosensor 1.517 ng ml−1 – 6.409 human serum [119]

HPLC/MS 0.003 ng mg−1 0.008 ng mg−1 2.729 0.200 g whole blood or 50 μl urine were
mixed with 200 μl water and 100 μl
0.10 mg l−1 IS in acetonitrile

[120]

UPLC–MS/MS 2.2 ng ml−1 7 ng ml−1 2.729 urine [121]

Label-free electrochemical cocaine aptasensor 91,020 ng ml−1 – 1.394 cocaine aptamer [122]

HPLC 32 ng ml−1 100 ng ml−1 2.14 plasma [123]

GC 0.02 ng mg−1 0.04 ng mg−1 2.14 hair [124]

Label-free fluorescence aptamer-based sensor 57,646 ng ml−1 – – cocaine aptamer [125]

MIP 0.049 ng ml−1 0.0081 ng ml−1 4.513 urine [126]

Complementary strand of aptamer 145.632 ng ml−1 – 6.409 Cocaine [127]

Microfluidic affinity sensor 3.034 ng ml−1 – – blood serum [128]

Electrochemical aptasensor based on
single-walled carbon nanotubes

31.857 ng ml−1 – 6.409 rat serum [129]

A novel fluorescent aptasensor based on
hairpin structure of

63.4106 ng ml−1 – 6.409 cocaine aptamer [130]

Chemiluminescence aptasensor 145.632 ng ml−1 – 3.436 Cocaine aptamer [131]

Reversed-phase HPLC 1 ng ml−1 – 4.169 plasma and human hair [132]
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Limitation and challenge

Despite the great progress of the development that has been
achieved in MIPs used for enrichment and determination of
illegal drugs, there still remain substantial development chal-
lenges to be tackled, such as the lack of convenient prepara-
tionmethods, template leakage, the recognition in polarity and
aqueous environment and so on. In order to improve the situ-
ations of MIPs in this field, certain achievements have been
attained up to now.

Optimization of preparation methods for MIPs

It is obvious that only a small part of MIPs applied in
the determination of illegal drugs and additives has re-
alized industrialization for the moment. Because the
preparation of MIPs is affected by various factors, the
research on most of MIPs is still in the experimental
stage. Currently, a trial-and-error method is seemed as
the general approach to selecting functional monomer
[135]. Namely, a portion of molecularly imprinted poly-
mers are synthetized with different common functional
monomers, and the experimental results decide the op-
timal molecularly imprinted polymer [136]. The choice
of functional monomer, cross-linker and polymerization
method depends on experience, which carries significant
limitations. It is both time consuming and tedious to
screen an imprinted system by experience.

Molecular simulation is simulating molecular motion
by theoretical method and computing technology for
improvement of cycle time spent on designing new ma-
terials and cost reduction. Molecular simulation technol-
ogy, has been utilized for explanation of recognition
mechanism, selection of functional monomer, determina-
tion of ratio of target molecule to functional monomer,
and the design of molecular imprinting system.
Although the combination of molecular simulation and
mathematical methods is regarded as a convenient ap-
proach [137], the technology as still shown some de-
fects. Therefore, its main studies are qualitative research
rather than quantitative study. Farhad Ahmadi et al.
[138] designed a MIP by aid of computational methods,
and the MIPs were successfully used to extract
metaproterenol in human plasma. The computer
assisted-design of MIP is proven to be effective in the
screen of the most suitable functional monomers for a
specified template molecule. According to the results,
the best functional monomer is AA. The best MIPs
show high selectivity, sensitivity, reproducibility and ac-
curacy for quantification of metaproterenol in complex
biological samples.

The development in the respect of novel techniques and
methods for MIPs preparation is also rapid, such as

electropolymerization [139, 140], the epitope approach to mo-
lecular imprinting [141], self-assembly [142, 143],
microwave-assisted method [144] and so on.

Applicability in aqueous solution

It is generally known that the samples used in the detection of
illegal drugs and additives are usually organic small molecules
in aqueous solution. However, most MIPs using organic small
molecules as template molecule only show great molecular
recognition property in organic solution. MIPs in organic so-
lution recognize objective molecules via hydrogen bonding,
while in aqueous solution, hydrogen bonding is weakened
greatly because of strong hydration action, which affects
MIPs molecular recognition property. In order to overcome
limitations of existing MIPs whose template molecule is or-
ganic small molecule identification strategies in aqueous so-
lution, research on MIPs in aqueous solution is imperative.

For the sake of weak hydrogen bonding, other intermolec-
ular forces such asmetal ion chelation, electrostatic interaction
should be taken in consideration. Metal ion chelation is not
influenced by water molecules, which is stronger than hydro-
gen bonding in aqueous solution. Stable specific binding sites
between metal ion and template molecule are formed in aque-
ous solution for selective recognition. As a bond interaction,
metal ion chelation facilitates the mild generation and cleav-
age of the interaction between metal ion and imprinted mole-
cule in aqueous solution. Zhong Zhang et al. [145] prepared
novel Hg2+ ion-imprinted polymers based on dithizone–Hg2+

chelation by a sol–gel process. The template molecule and
functional monomer were dithizone–Hg2+ chelate and 3-
aminopropyltriethoxysilane, respectively. The method shows
great potential for the determination of Hg2+ in aqueous, solid
and semi-solid biological samples.

Surface modification is another rational choice apart from
enhancing the intermolecular forces, which is mentioned in
section 2.3. Chiyang He et al. [146] grafted testosterone-
imprinted polymer film on the surface of porous silica suc-
cessfully to selectively detect testosterone. The composite is
seemed as a rational method for separation of testosterone.

Leakage of template molecules

WhenMIPs are prepared by noncovalent bond, template mol-
ecules can form molecular complexes in presence of function-
al monomers. MIPs binding sites established tend to be inho-
mogeneous, resulting in non-specific binding. Then, it is dif-
ficult to remove template molecules from the molecularly
imprinted polymers, which causes the leakage of template
molecules. At present, the leakage of template molecules is a
serious distraction to the detection in the detection of illicit
drugs and additives.
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To resolve the problem, structural analogs which possess
similar parent structure or the same functional groups, are
utilized as dummy template molecules. The analogous bind-
ing sites and spatial structure of dummy template molecules
can avoid the leakage of template molecules and poor solubil-
ity of template molecules. Xiao-Yun Zhao et al. [147] pre-
pared a MIP monolithic column by in-situ thermal-initiated
polymerization to detect triamterene. Because the structure
of melamine is similar to that of triamterene, it is chosen as a
dummy template molecule, which can avoid leakage of the
template and improve the efficiency of detection. The mono-
lithic columns are effective in analysis of triamterene in bio-
logical samples.

Porous MIPs are endowed with highly crosslinked mi-
croporous structure, narrow hole sizes and large specific
surface areas. Numerous effective recognition sites bring
about high adsorption capacity for target molecules and
rapid adsorption kinetics. Furthermore, the porous struc-
ture can avoid the poor results of incomplete template
molecule removal from the polymers during subsequent
treatment. Shoufang Xu et al. [148] developed three
types of porous MIPs, including single-hole hollow
MIPs, multihole hollow MIPs and porous solid MIPs,
for the preconcentration and detection of triazines in soil
samples. In the respect of the imprinting capacity, single-
hole hollow MIPs and multihole hollow MIPs are better
than porous solid MIPs. The MIPs have higher binding
capacity and faster mass transfer in favor of template
removal.

Balance of adsorption capacity and selectivity factor

Adsorption capacity is usually used as an evaluation index of
MIPs adsorption performance. Selectivity factor refers to spe-
cial selectivity for target molecule and high selectivity factor
makes target molecule easier to be identified in complex sam-
ples. For the sake of the best results, large adsorption capacity
and high selectivity factor are both needed to improve the
materials performance. Nonetheless, influenced by surface
functional groups, different temperature, various concentra-
tion of the solutions, diverse ratio of functional monomers to
template molecules and so forth, adsorption capacity and se-
lectivity factor cannot reach the best value simultaneously.
Namely, there exists a balance relationship between the two
indexes. How to balance the relationship between adsorption
capacity and selectivity factor depends on the specific require-
ments in actual application.

Lack of convincing characterization methods

In general, the characterization of MIPs consists of mor-
phology characterization, structural characterization, rec-
ognition behavior recognition, property characterization,

hydrophilic characterization and so on. The adsorption
capacity can be selected to characterize the surface area
of MIPs. Besides, various kinds of microscopes includ-
ing transmission electron microscopy (TEM), scanning
electron microscopy (SEM), atomic microscopy(AFM)
and so forth, are applied for morphology characterization
of prepared MIPs, obtaining the size and morphological
characters. The physical property and the structure of
product are investigated by fourier transform infrared
(FT-IR) spectroscopy and elemental analysis, and ther-
mogravimetric analysis(TGA) is used to evaluate thermal
stability. Analysis of equilibrium data with kinetic model
and thermodynamics model can show the assessment of
recognition behavior. The maximum adsorption capacity,
selectivity factor and bioconcentration factor are all sig-
nificant parameters in the performance measurement for
MIPs. The evaluation of hydrophilic property of MIPs is
carried out by means of their dispersity in aqueous solu-
tion and contact angle with water. In spite of the fact that
there are a large number of characterization methods in
all aspects, an efficient characterization method is still
lacking when researchers wonder whether it really
formed imprinted holes as respected.

Absence of uniform parameters for selectivity

The concept of selectivity is used to quantify the extent to
which a given sorbent (MIP) binds two different compounds
(template and referent). However, there have at least two de-
scription method:

a. The interrelated absorbed coefficient was evaluated by the
following equations. [149]:

Static distribution coefficient: Kd ¼ Cp

Cs:

whereCp is the concentration on the absorbed medium and
Cs is the final free concentrations of the solution. For compar-
ison of the MIP beads selectivity, the selectivity coefficient k
was calculated as the following formula:

Selectivity coefficient: K ¼ Kd Templateð Þ
Kd Referentð Þ

where Kd(Template) and Kd(Referent) are the static distribution
coefficients of template and referent molecules, respectively.

b. The equilibrium adsorption capacity (Q, μg mg−1) of tem-
plate or referent bound to the imprinted polymers are cal-
culated as the following formula [150]:

Q ¼ C0−C1ð Þ � V=m
Where C0 and C1 represent the initial solution concentration
and the final solution concentration (μg mL−1) of template or
referent. V represents the volume of the solution (mL) and m
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represents the weight of the polymer (mg), respectively.
The imprinting factor is defined as follows:

α ¼ QA

QB

where QA and QB are the capacities of MIP and NIP to adsorb
the template or referent. The selectivity factor is defined as
follows:

β ¼ α1

α2

where α1 is the imprinting factor with respect to the template
and α2 is the imprinting factor with respect to referent.

There is not a uniform parameter for assessment of the
selectivity for the moment. Different authors used various
kinds of parameters because MIPs are widely used in a large
range of scientific applications. Hence, it is difficult to com-
pare the synthetized MIPs whose selective recognition ability
are measured by diverse parameters.

Merits and demerits of MIPs prepared using
nanomaterials

Using nanostructure materials as template, many MIPs with
nanometer size have been synthesized for detection of illegal
drugs and additives. In the preparation of MIPs, nanostruc-
tured MIPs need no comminution and screen, which avoids
damaging the recognition sites. Compared with MIPs with
micron structures, nanostructured MIPs has higher specific
surface area to increase the proportion of effective binding
sites. Most of the binding sites are located at or near the sur-
face of nanomaterials so that nanostructured MIPs show
higher adsorption capacity. Besides, template molecules can
easily attach to the molecular recognition sites, resulting in
fast binding kinetics. The comparison of nanosized and
microsized MIPs is shown in Table 6.

However, the preparation process of nanosized MIPs has
high requirements on instruments and technology. Nanosized
MIPs still have the problems of high cost of production, irreg-
ular shape, uneven particle size, and decreased affinity due to
high polymerization temperature. Therefore, the preparation
of nanostructured MIPs is still a research direction in the
future.

Conclusion

The development of new enrichment materials with high se-
lectivity, and sensitive analysis methods for the determination
of illicit drugs and additives has become a significant research
subject. In this review, polymerization methods, highlighted Ta
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applications, limitations and challenges of MIPs in the detec-
tion of illegal drugs and additives are summarized. Comparing
with traditional analytical methods, MIPs demonstrate incom-
parable superiority in view of easy preparation, high sensitiv-
ity, good selectivity, and so on. Significant efforts have been
made to further accelerate the development of MIPs. The
preparation methods for MIPs can be optimized with the help
of molecular simulation and computer-aided designing sys-
tem. The intermolecular force is enhanced by means of metal
ion chelation and surface modification in response to the lim-
itation of poor identification strategies in aqueous solution. As
the result of the fact that the leakage of template molecules has
been impeding the pace of development of MIPs, dummy
molecule imprinting and porous polymers are selected to
solve the problem. However, there are still some challenging
problems in this field. In order to satisfy the requirements of
practical applications, the relationship balance of adsorption
capacity and selectivity factor is worthy of research. The char-
acterization of MIPs is unilateral in absence of convincing
characterization methods. There are no uniform parameters
for selectivity factor so that the MIPs are hard to compare by
various parameters and indicators. Nanosized MIPs are in-
creasingly popular, but there are also advantages of irregular
shape, uneven particle size, and so on. These problems open a
new line of inquiry that should be pursued by research labo-
ratories in the field for more widespread use in relevant fields.
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