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Abstract—The Rapidly-exploring Random Tree (RRT) based
method has been widely used in robotic exploration, which
achieves better performance than other exploration methods in
most scenes. However, its core idea is a greedy strategy, that is, the
robot chooses the frontier with the largest revenue value as the
target point regardless of the explored environment structure. It
is inevitable that before a certain area is fully explored, the robot
will turn to other areas to explore, resulting in the backtracking
phenomenon with a relatively lower exploration efficiency. In
this paper, inspired by the perception law of bionic human, a
new exploration strategy is proposed on the basis of the prior
information heuristic. Firstly, a lightweight network model is
proposed for the recognition of the heuristic objects. Secondly,
the prediction region is formed based on the position of the
heuristic object, and the frontiers in this region are extracted by
the method of image processing. Finally, a heuristic information
gain model is designed to guide the robot to explore, which
allocates priority to the frontiers within the heuristic object area,
so that the robot can make effective use of the prior knowledge
of the room in the scene. Priority is given to the exploration
of one room completely and then to the next, which can greatly
improve the efficiency of exploration. In the experimental studies,
we compare our method with RRT based exploration method in
different environments, and the experimental results prove the
effectiveness of our method.

Index Terms—Robot Exploration, Frontier Detection, Deep
Learning, Prior Information Heuristic

I. INTRODUCTION
Robot exploration is a key step for robots to complete

various tasks independently. Recently, the robot exploration
methods based on frontier [1] have been widely used, in
which the boundary with frontiers divides the exploration
space into the known area and the unknown area, and guides
the robot to gather information for updating the map. In
order to explore the environment more effectively, the focus
of this kind of exploration methods is mainly how to detect
and select the frontiers. The Rapidly-exploring Random Tree
(RRT) [2] based method records the place of the tree top as
the frontier. Compared to the image based method for frontier
detection [3], [4], this method saves computing resources and
improves the extraction speed of frontiers, especially in a
relatively large environment. The frontier selection influences
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Fig. 1: An illustration of the influence of prior information
heuristic on the selection of frontiers. (a) shows the case
without heuristic information. (b) shows the law of closure.(c)
shows the case with heuristic information, namely the geo-
metric space expectation (cyan) under the heuristics of some
semantic objects, e.g. a door. The blue dot denotes the current
position of the robot, and the red and green squares denote
the candidate frontiers.

the exploration efficiency directly. Currently, most of the
existing robot exploration strategies focus on how to design the
information gain model of the frontier to choose a frontier with
a large revenue. As shown in Fig. 1(a), the robot firstly chooses
frontier 1 to explore according to its information gain at the
current moment. During the motion of the robot to frontier 1,
frontier 2 may obtain a larger revenue in turn and then the
robot moves back to frontier 2, resulting in the backtracking
phenomenon. This is because the greedy strategy exploration
evaluates the candidate frontiers independently and ignores the
geometric continuity of obstacles in the environment.

In order to address the above problems, we obtain inspira-
tions from the bionic human perception law, especially the law
of closure. The principle of the law of closure is that when
the human brain receives incomplete sound or visual image,
it tries to ignore the incomplete sound and image. As shown
in Fig. 1(b), when people see the figure, he recognizes it as
a rectangle, and then the incompleteness of the rectangle will
appear in his mind. This occurs since a connection between
these intermittent lines and the geometric shape has been
established according to its prior knowledge. The exploration
process is similar. For example, many rooms are separated by
doors in indoor environments and when people see a door, he



usually expects a room behind it. The connection from such
kind of semantic information to geometric heuristic can also
be utilized as prior information for the robot exploration. As
shown in Fig. 1(c), when a room is expected behind the door,
the higher expected information gain will guide the robot to
explore the rest of the room firstly, namely frontier 2 and then
turn to frontier 1. In this work, we hope to bring this idea
into the robot exploration strategy and propose a systematic
framework for the robot exploration with prior knowledge.

The rest of this paper is organized as follows. In Section
II, we first review the related work of the frontier-based
robot exploration methods. Exploration strategy based on prior
information heuristic is described in detail in Section III. We
conduct a series of experiments and discuss the results in
Section IV and finally draw conclusions in Section V.

II. RELATED WORK

The frontier-based exploration method has been favored
by many scholars [5]–[7] for its obvious advantages over
other algorithms and the research topics of frontier-based
exploration methods have mostly focused on how to extract
and select frontiers.

In the extraction of frontiers, some scholars use image
processing technology to extract frontiers. At the beginning
of exploration, the size of the map is quite small and the
speed of extracting frontiers is relatively quick, however, with
the expansion of the map, the computing resource occupancy
increases, and the speed of frontier extraction decreases. Keida
and Kaminka [8] proposed to process the newly generated
sensor data to extract frontiers. Senarathne et al. [9] proposed
a method to generate frontiers by tracing the latest changes
in the grid values of the map. Umari et al. [2] proposed
to use RRT [10] to extract frontiers, this method records
the nodes of the tree top at the boundary as the candidate
frontiers. The RRT-based frontier extraction method is widely
used since it does not need the precise construction of the
whole map and thus saves computing resources. However,
due to the randomness of tree growth, this method cannot
extract the frontiers at corners and narrow corridors in time,
leading to some backtracking phenomenon. Wu et al. [11] put
forward the method of combining RRT with image processing
technology. When the size of the map is relatively small, the
method based on image processing proves to be faster.

The selection of frontiers is a decision-making process to
maximize the efficiency of environmental exploration by using
the information of the known environment and current robot
position. Some scholars adopt the decision-making method of
randomized motion. Oriolo et al. [12] proposed a randomized
increments of a data structure called Sensor-based Random
Tree, which represents a roadmap of the explored area with
an associated safe region and the nodes on this tree denote
the visited explored locations. A subsequent improvement in
[13] is proposed to bias the selection of the target point
towards the local boundary arc of the current safe area. When
the unexplored area cannot be found on the current node,
the robot will return through previous nodes on the tree to

find new unexplored area. Therefore, this scheme usually
cannot avoid the backtracking problem. In order to improve
the efficiency of exploration caused by the backtracking phe-
nomenon, EI-Hussieny et al. [14] made further improvements.
The new algorithm directly determines the most informative
node instead of traversing all previous nodes in order. On the
other hand, some scholars integrate their exploration strategies
into the revenue function of the frontier, and choose the
frontier with the largest revenue value as the target point
to explore. Yamauchi et al. [1] put forward the exploration
strategy of the nearest-frontier, whose revenue function is
inversely proportional to the length of the path. Bourgault
et al. [15] proposed a revenue function that combines the
expected information gain and the length of the expected path.
Umari et al. [2] proposed a new information gain estimation
method, which only considers the unknown grid inside of the
circle centering at the frontier with a predefined radius, and
further combined the information gain with the path cost in the
benefit function. However, most of them evaluate the candidate
frontiers independently and ignore the geometric continuity of
obstacles in the environment.

In order to address this problem, some scholars propose
to enrich the revenue function and estimate the environmental
information according to the geometric continuity of obstacles.
Shrestha et al. [16] employed a state-of-the-art generative
neural network to predict unknown regions of a partially ex-
plored map, and use the prediction to enhance the exploration
in an information-theoretic manner. Bogoslavskyi et al. [17]
proposed a method to match the region outside the boundary
with the most similar map in the database, and calculated the
expected information gain according to the matching results.
Pimentel et al. [18] proposed a heuristic map prediction
method to calculate the expected information gain by linearly
extending or rotating the wall by 90◦. These prediction meth-
ods are usually based on the prior knowledge of a certain type
of environment, which have shown obvious advantages during
the robot exploration. However, when predicting the geometric
continuity of the environment, most algorithms only use the
geometric heuristic information of the environment, such as
the geometric shape of a known map, a part of a corridor, etc.
In fact, semantic information can also provide much heuristic
about the structure of the environment. For example, when
seeing an open door, people usually expect a room behind it. In
this paper, we explore the utilization of semantic information
to predict unknown environmental structure and guide the
robot exploration in indoor environment.

III. METHODOLOGY

In this section, we will introduce in detail the implemen-
tation process of the proposed exploration strategy based on
prior information of indoor environment, and the framework of
the algorithm is shown in Fig. 2. The SLAM module receives
the sensor data to update the unknown map. Two fast search
random trees grow in the free area of the known map for
frontier detection [2], and then a utility function is used for the
frontier selection and the frontier with the maximum revenue
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Fig. 2: Overall framework of the robot exploration algorithm.

is chosen as the target for the exploration. In this paper,
we propose to associate the specific object with geometric
heuristic by using the prior knowledge so as to select a frontier
with more expected information gain. Firstly, we use the
method based on deep learning to complete the recognition
of the heuristic object. An improved lightweight network is
proposed to quickly complete object recognition and obtain
the location coordinates of the object. After that, a geometric
area is associated with the location of the heuristic object.
The association follows the perceptual knowledge of people
and taking the door as an example, people usually expect a
room behind a door. Then, the frontier inside the expected
geometric area is efficiently extracted by using the image
processing technology and the robot will first explore this
area. In this way, the geometric continuity of the environment
can be considered in the robot exploration, thereby avoiding
the backtracking problem caused by ignoring the semantic
information of the environment.

A. Heuristic Object Recognition and Pose Estimation Based
on Lightweight Network

Many state-of-the-art methods have been proposed for ob-
ject recognition [19], [20] and methods based on deep learning
have shown great superiority recently [21]–[23]. However,
their high computational cost still hinders the application on
robots. In this work, we propose an optimized lightweight
network to access the heuristic object recognition.

On the basis of the YOLOv4_tiny network, we designed
a lightweight YOLO for service robots, namely YOLO_SR.
This lightweight network is mainly composed of convolutional
layer, inverted residual block, pooling layer, and SPP(Spatial
Pyramid Pooling) layer, with a total of 42 layers, and the
output is simplified to two layers. As shown in Fig. 3, when
the input scale is 416 × 416 × 3, the corresponding output
layers are 13 × 13 × 255 and 26 × 26 × 255, respectively.
The inverted residual block in the backbone network can
effectively improve the feature extraction dimension, while
the SPP layer located in the deep layer integrates the local

Fig. 3: The proposed lightweight network for heuristic object
recognition.

and overall features in space. In the training process, we
collect samples in the actual environment and combine with
online supplementary methods to establish a data set about the
heuristic object. In this paper, we mainly consider the heuristic
function of the door. Considering the similarity between many
objects and the door structure in the actual environment, in
order to reduce the false detection rate during the detection
process, we added common objects such as bed, cabinet,
table, chair, and refrigerator as negative samples. Compared
with YOLOv4_tiny, the detection accuracy of YOLO_SR has
increased by 19.2%, which is close to that of YOLOv4, but
the speed is almost four times than that of YOLOv4. In
general, YOLO_SR is extremely effective in terms of speed
and accuracy, it is suitable for heuristic object recognition.

After the heuristic object recognition, the image coordinate
of the recognized object can be obtained. Next, we realize the
mapping from two-dimensional point in the image coordinate
to three-dimensional point in the robot coordinate. We assume
that the coordinate of the center point P of the heuristic object
on the image plane is (x′, y′), and its coordinate in the robot
coordinate system is (x, y, z). The mapping process can be
formulated as follows:
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Fig. 4: The frontier extraction based on image processing. (a) the map within the expected area; (b) binary processing; (c)
obstacle extraction; (d) canny edge detection; (e) frontiers at the gravity centers of the extracted edges.

Φ(x, y, z)→ (x′, y′) (1)

x′ =
x ∗ fx
z

+ cx (2)

y′ =
y ∗ fy
z

+ cy (3)

In this work, a depth camera is utilized and the depth
coordinate z of the point P can be obtained directly, and then
the 3D points in the global coordinate system can be obtained
by the back projection equation. In order to facilitate the actual
conversion calculation, we use homogeneous coordinates to
represent the camera parameters, so the conversion from 2D
point to 3D point can be expressed as: x′

y′

z′

 =

 fx 0 cx
0 fy cy
0 0 1

 x
y
z

 . (4)

The camera internal parameter (fx, fy, cx, cy) can be obtained
from the internal parameter calibration of the depth camera.

B. Extracting Frontiers in the Expected Area

After the heuristic object recognition, an association be-
tween the heuristic object with an expected area is formu-
lated firstly. The association process is inspired by the prior
knowledge about the indoor environment. Herein, we take
the door as an example again. As shown in Fig. 5, the red
triangle represents the position of the door, and the yellow
circle indicates the position of the robot. According to the
prior knowledge that the area behind the door is usually a
room, we use the relative position relationship between the
robot and the door in the map to determine the location of the
expected area on the map. Because in the indoor environment,
the shape of the room is often similar, and the heuristic area
we build is a rectangular area with the position of the door as
the center, extending a to the left and right, and extending back
2b, in which the parameter aline b is set by experience. In order
to enable the robot to explore the room area completely, the
expected area we constructed is slightly larger than the room
area of the actual map. After that, the four vertex coordinates
of the expected area are obtained on the map and the frontiers
are then extracted in this area.

Expected Area

Environment

Fig. 5: The association from the heuristic object to the ex-
pected area.

Herein, we firstly compare the two methods of extracting
frontiers based on image processing and RRT, respectively.
As mentioned in Sec. II, the image processing process based
method is usually more efficient when the size of the map
is small. With the expansion of the map, it consumes more
computing resources, and the speed of frontier extraction is
slower than that of the method based on RRT. The frontier
extraction method based on RRT is to randomly scatter points
in the known area of the map and each time the tree grows
a branch in the direction of the random point. When the
branch grows to the boundary, a frontier is then found. Because
the growth direction of the tree is random every time, the
extraction speed of the frontiers in the corner of the map is
slow. In this work, a high frontier extraction efficiency is re-
quired, otherwise, the robot will leave the current room before
completing the exploration in the expected area. Moreover, the
size of the expected area is also limited. Therefore, we use
image processing technology to extract the frontiers within
the expected area, and adopt the RRT-based method in other
areas outside the expected area.

The frontier extraction process based on the image process-
ing is shown in Fig. 4. Fig. 4(a) shows the map within the
expected area, where the grey represents the unknown area, the
white denotes the free area and the black denotes the obstacle
area. The extraction process can be divided into the following
steps:

• Firstly, a binary processing is performed on the original
map, where the obstacles are marked as white and the



TABLE I: Statistics of the environmental sizes.

size map1 map2 map3

map 11 × 14 m2 20 × 15 m2 24 × 10 m2

rest turns black, as shown in Fig. 4(b);
• By reversing Fig. 4(b), the obstacles are then extracted

as black, as shown in Fig. 4(c);
• A canny edge detection is carried out on Fig. 4(a) on the

basis of OpenCV, and the edge of the image is white and
the rest is black, as shown in Fig. 4(c);

• The image obtained in the second and third step is
operated according to the bit, and the corresponding
image is white only when the corresponding place is
white. The boundary of the unknown area of the map is
then obtained, as shown in Fig. 4(e), which is composed
of straight lines;

• Take the centers of gravity of straight lines as the fron-
tiers.

C. The Robot Exploration Strategy based on the Expected
Frontiers

After the frontier extraction in the expected area, a series
of expected frontiers can be obtained. A utility function is
then designed for the frontier selection, which is formulates
as follows:

Uf = h ∗ If −Nf (5)

If (Information Gain): the number of unknown grids in
the circle with the location of the frontier as the center and
the information gain radius r as the radius.

Nf (Path Cost): the Euclidean distance between the current
position of robot and the position of frontier.

where h is user-defined constant which is used as a weight.
Our exploration strategy is that when a heuristic object is

identified, it means that the robot is near an unexplored room
area. After the frontiers are extracted by image processing
technology, the robot will be guided to enter the room area.
When all the expected frontiers have been explored, indicating
that the exploration of the expected area has been completed,
the robot then turns to the RRT frontiers to explore. When a
expected area is explored, the expected area model is destroyed
immediately, which makes it easy for the robot to identify the
next expected area and avoids the repeated establishment of
the same expected area.

IV. EXPERIMENTAL STUDIES AND RESULTS

In order to verify the effectiveness of our proposed robot
exploration method, the experimental studies are carried out
and a laptop computer with Intel Core i7-9750H CPU @2.6
GHz and 16 GB RAM is adopted as the computing platform.
The RRT-based robot exploration algorithm [2] is adopted as
a reference.

The experiment is conducted on the basis of the Robot
Operating System (ROS) [24]. Three different exploration
environments are included, and their corresponding size are

Fig. 6: Robot exploration trajectories in three typical scenarios.
The red triangle indicates the location of the heuristic object.
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Fig. 7: Experimental results of the robot exploration. The left
figure shows the time of exploration, and the right figure shows
the length of exploration path.

listed in Table I. The experimental environments are randomly
constructed, and each environment contains different heuristic
objects, namely the doors. The difference lies in the relative
positions of the heuristic objects: some are close to each other,
and some are far away, as shown in Fig. 6. The perception
range of the laser rangefinder is set with 180◦ field of view,
and the sensing distance is all set to 7 m. For each experimental
environment, 10 times repeated trials are conducted for each
method.

As shown in Fig. 6, the trajectories during the robot explo-



ration in three environments are recorded and the left column
shows that of the RRT-Exploration and the right column shows
that with our algorithm. In order to show the trajectories more
clearly, we only randomly select three sets of data to display.
We can see that the backtracking phenomenon of the RRT-
Exploration method is serious and many repeated routes are
generated in the environment, while the exploration trajectories
of our method have no great twists and turns. It indicates that
the proposed method can solve the backtracking phenomenon
well. In addition, the runtime and path length of the robot are
also recorded, as shown in Fig. 7. The experimental results
show that in the first map, our method reduces the exploration
time by 34.9% and the length of exploration path by 24.5%
compared with the RRT-based algorithm. In the second map,
our method reduces the exploration time by 12.8% and the
exploration path length by 16.9%. In the third map, our method
reduces the exploration time by 34.0% and the exploration path
length by 35.9%.

From the experimental results, we can see that our method
has a significant improvement in exploration efficiency com-
pared with the RRT-based method. Due to the randomness
of the sampling, the RRT-Exploration method often can not
detect the frontiers at the corner of the unknown map in
time. Moreover, since the RRT-Exploration method does not
distinguish the frontiers inside and outside the expected area,
when the utility value of the frontier outside the expected
area is larger, the robot will stop exploring the current area
and turn to another. Therefore, its backtracking phenomenon
is serious and the exploration efficiency is relatively low.
On the other hand, the proposed method makes full use of
the geometric continuity of the environment structure and
distinguishes the frontiers inside and outside the expected
area, which effectively avoids the backtracking phenomenon.
In conclusion, the effectiveness of our algorithm has been fully
proved from the two indicators of exploration time and path
length.

V. CONCLUSIONS

In this paper, we have proposed an exploration method
based on the prior information heuristic for the indoor en-
vironment. Firstly, the lightweight network model has been
designed for the heuristic object recognition. Secondly, the
expected area is associated with the heuristic object, and the
frontiers inside the expected area are efficiently extracted by
the method of image processing. Finally, the robot is guided
to explore the frontiers in the expected area until the explo-
ration of the expected area is completed. The experimental
studies have been carried out on different scenarios and the
experimental results have revealed that the proposed strategy
greatly reduces the backtracking phenomenon and improves
the exploration efficiency, which prove the effectiveness of
our proposed method.
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