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Abstract

A recent method for solving differential equations using feedforward neural networks was applied to a non-steady fixed bed non-

catalytic solid�/gas reactor. As neural networks have universal approximation capabilities, it is possible to postulate them as

solutions for a given DE problem that defines an unsupervised error. The training was performed using genetic algorithms and the

gradient descent method. The solution was found with uniform accuracy (MSE �/10�9) and the trained neural network provides a

compact expression for the analytical solution over the entire finite domain. The problem was also solved with a traditional

numerical method. In this case, solution is known only over a discrete grid of points and its computational complexity grows rapidly

with the size of the grid. Although solutions in both cases are identical, the neural networks approach to the DE problem is

qualitatively better since, once the network is trained, it allows instantaneous evaluation of solution at any desired number of points

spending negligible computing time and memory.

# 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The general method for solving differential equations

with unsupervised feedforward neural networks was first

introduced by van Milligen et al. [1]. They stated the

general method and applied it to a magnetohydrody-

namic plasma equilibrium problem. Other authors

applied this method to other physical problems. Mon-

terola and Saloma [2,3] solved the non-linear Schrödin-

ger equation. Quito et al. [4] used neural networks for

solving self-gravitating systems of N -bodies. As far as

we know, the method has not been applied to solve

chemical reactor problems.

Finding a neural network that approximates the

solution of a given set of differential equations has

many benefits compared with traditional numerical

methods. First of all, the solution is continuous over

all the domain of integration. In contrast, the numerical

methods provide solutions only over discrete points; and

the solution between these points must be interpolated.

The computational complexity does not increase con-

siderably with the number of sampling points and with

the number of dimensions involved in the problem. Also

the rounding-off error propagation of standard numer-

ical methods does not affect the neural network solu-

tion.
The use of neural networks (NN) in the present work

is totally different from that in a previous one [5], where

a set of ODEs was solved first numerically and then two

networks were trained using the solution points ob-

tained. Here, the NN are proposed directly as solutions

of the differential equations system, without knowing

any solution point in advance, this means, the NN must

be trained in an unsupervised manner.
Also, the present application of NN in chemical

engineering is used from the point of view of a new

mathematical method for solving general differential

equations, which describe any particular system. This

* Corresponding author. Tel.: �/54-11-4576-3240; fax: �/54-11-

4576-3241.

E-mail addresses: parisi@di.fcen.uba.ar (D.R. Parisi), mcmarian-

@dm.uba.ar (M.v.C. Mariani), miguel@di.fcen.uba.ar (M.A.

Laborde).

Chemical Engineering and Processing 42 (2003) 715�/721

www.elsevier.com/locate/cep

0255-2701/03/$ - see front matter # 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0255-2701(02)00207-6

mailto:parisi@di.fcen.uba.ar
mailto:mcmarian-@dm.uba.ar
mailto:mcmarian-@dm.uba.ar
mailto:miguel@di.fcen.uba.ar


means that the chemical system is not considered as a

black box, as it could be done in other supervised NN

applications.

In the next section the general method for solving
differential equations with NN is outlined. Then the

simulation of an unsteady solid�/gas reactor is solved as

an application example. Also, the problem is solved

using a traditional numerical method for validating and

comparing.

2. The method

Any set of differential equations can be represented

by the following expression

D(f (z))�0 (1)

where D is any non-linear, inhomogeneous differential

operator and f(z) is the solution that satisfies Eq. (1)

and the appropriate boundary conditions.

Considering that a feedforward neural network is an

universal function approximator [6�/13], the goal is to
find a neural network f*(z ) which approximates f (z ) in

the finite domain z � /[a, b]n .

It is well known from neurocomputing sciences [14�/

18] that, in the case of one hidden layer, the functional

form of component ‘s ’ of network’s output f* is given

by
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where the w ’s are the network’s adaptive coefficients

(weights), the b ’s are the bias and g is a sigmoid

activation function. Note that f* is a continuous and

derivable function of z , therefore the differential opera-

tor D can act on it.

In order to find an approximation of f (z ), it is natural
to choose Eq. (1) plus the equations defining the

boundary conditions as the performance function of

the network. This error measure (E ) must be evaluated

in a finite number of points (P ) into the integration

domain zi � /[a , b ]n .
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where B is a differential operator defining the boundary

conditions. As E tends to zero, f*tends to f and so the

approximate solution for the differential equation

system is found. As the error does not depend on target

outputs (the function f is unknown a priori) the network

is said to be trained in an unsupervised manner.

Training the neural network means to find the correct
w ’s so that E(w ) is reduced to zero. In unsupervised

learning, it is impossible to use the backpropagation

algorithm because the error at each output unit is not

available to the learning system. So, standard optimiza-

tion techniques must be used. One of the simplest is the

gradient descent method, the weights are initialized

randomly and then, the following change rule is applied:

w
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�
(4)

where h is the learning rate and q is the iteration step.

There are other more efficient techniques as for example

quasi-Newton and conjugate gradient.

Schaffer et al. [19] point out that ‘genetic algorithms’

can be most useful in finding weights in unsupervised
learning tasks. There are other works dealing with

genetic algorithms and neural networks [20�/22]. For

an introduction to this subject see Goldberg [23] or

Mitchell [24]. The genetic method has the advantage

that it searches the weight space without any gradient

information of the error function (E (w )) whose deriva-

tives can be more or less complicated depending on the

particular operators D and B in the Eq. (3).
The ideal searching method could be a combination

of both. First a global search using genetic algorithm.

Then, a more exact position of minima can be obtained

with gradient descent techniques.

It must be noted that the method for solving

differential equations with neural networks is indepen-

dent of the training method chosen, which can accelerate

or slow down the speed of the training phase.
The method that allows solving differential equations

with neural networks has several advantages compared

with traditional numerical methods. The solution is

analytic over the entire domain, which allows computing

solution values for any input rapidly and gives a

compact expression for that solution; computational

complexity does not increase rapidly with the number of

sampling points and there is no propagation of round-
ing-off errors affecting the accuracy of the solution. In

contrast, standard methods provide solution values only

at discrete locations of the solution space and the

complexity increases rapidly with the number of sam-

pling points.

Another important advantage is the following: If

there are free parameters (as for example kinetic

constants, diffusion coefficients, etc.) in the model,
they could be treated as variables, extending the number

of dimensions of the problem. Consequently, the func-

tion f* (x , y , t , ki , Di , . . .), will be a continuous function

of the original variables and the free parameters. This

simplifies the optimization of the model (comparing f*

versus experimental data) with respect to the free

parameters. Since it would be not necessary to solve

the DE problem (1) each time the free parameters
change, as it would be the case, if the solution were

obtained by any traditional numerical integration

method.
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The main difficulty of the method lies on the training

phase, which may be time consuming, since unsuper-

vised training is in general not simple.

3. Example: unsteady solid�/gas reactor

The method described above is applied to a chemical

reactor problem. Let simulate a fixed bed tubular

reactor filled with porous pellets and two different

reacting gases are fed at the reactor inlet (y�/0).

The chemical reactions involved are:

Reaction 1 A(g)�aS(s) 0 products

Reaction 2 B(g)�aS(s) 0 products

The extent of conversion of each gaseous reactant is

defined instantaneously by the following equations

X1�C0
A�CA; (5)

X2�C0
B�CB; (6)

and in the solid phase

XS�X1�X2�
1

a
(C0

S�CS)�X3 (7)

where C is the concentration (mol/cm3) and it can be

related to the molar flow (F ) using the following

equation

Fn�CnuAR; (8)

being u the gas velocity and AR the crosssection of the
tubular reactor.

The reacting system is assumed to be isothermal.

Gases in the reactor follow a plug flow regime (the axial

direction is the relevant spatial dimension). As the solid

is fixed, there are no steady state conditions, so the time

evolution must be considered.

Under these assumptions, mass balances in each

phase, leads to a set of three coupled first-order partial
differential equations that describes the reacting system:

@X1

@t
�u

@X1

@y
�R1(X1; X3)�0 (9)

@X2

@t
�u

@X2

@y
�R2(X2; X3)�0 (10)

@X3

@t
�R1(X1; X3)�R2(X2; X3)�0 (11)

where Xm is the extent of conversion of reactant m�/1, 2

or 3, corresponding to A, B or S, respectively; and Rn

(B/0) is the reaction rate of the gaseous reactants n�/ 1,

2 (A and B).The boundary conditions for the system are

X1(y�0; t)�0 for t � [0; 1] at y�0 (12)

X2(y�0; t)�0 for t � [0; 1] at y�0 (13)

and the initial conditions are

X3(ut;y=u)�0 for y � [0; 1] at t�y=u (14)

@X1

@y
�

�R1(X1; 0)

u
for y � [0; 1] at t�y=u; (15)

@X2

@y
�

�R2(X2; 0)

u
for y � [0; 1] at t�y=u; (16)

Note that initial conditions (14�/16) take into account

that the problem is undefined before t�/y /u, when the

gases reach a given point y , at the beginning of the

simulation.
In a direct application, it would be possible to solve

this PDE problem using the NN method described

above. Eqs. (9)�/(11) would be the particular form of the

general operator D in Eq. (1) and Eqs. (12)�/(16) would

define the particular form of the general boundary

operator B in Eq. (3). If this were the case, X1, X2 and

X3 would be approximated by three different neural

networks X 1�; X 2� and X 3�:/
However, an easier ODE problem can be obtained

from the PDE problem (9)�/(16) before applying neural

networks. Consider the following transformation:

t?�t�y=u; (17)

y?�y (18)

The derivatives respect to the new variables result:
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And the PDE system (9)�/(11) can be re-written as

u
@X1

@y?
�R1(X1; X3)�0 (21)

u
@X2

@y?
�R2(X2; X3)�0 (22)

@X3

@t0
�R1(X1;X3)�R2(X2;X3)�0 (23)

with the boundary conditions:

X1(y?�0; t?)�0 (24)

X2(y?�0; t?)�0 (25)

X3(y?; t?�0)�0 (26)

Concerning the kinetic expression (R ), the unreacted

shrinking core model with first order reaction was

chosen. The expression for the reaction rate per unit
reactor volume, Rn is [25]

Rn�
�np4pr2

cCn

[1=kn � rc=Dn � r2
c=roDn]

; (27)

where n�/1, 2 indicates the gaseous reactant np is the

number of pellets per unit volume; C is the concentra-

tion of the gas outside the pellet (it is assumed that
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external diffusional resistance is negligible); k is the

kinetic constant for the surface reaction; D is the

effective diffusion coefficient; r0 is the external radius

of the pellet and rc is the radius of the unreacted core
related to X3 by

rc�r0

�
1�

aX3M

r

�1=3

; (28)

where M and r are the molecular weight and the density

of the solid reactant, respectively.
For simplicity, it is assumed that in Eqs. (21) and (22),

the variation of X3 with respect to y ? is negligible

comparing with the X1 and X2 gradient. Physically, it

means that, for a given instant t ?, the gaseous species

will have more pronounced variations of concentration

that the solid pellets along the reactor. This is a

reasonable simplification if the difference of densities

between solid and gaseous phases is taken into account.
However in Eq. (23) the dependence of X3 with respect

to y ? will be considered.

Under this assumption, Eqs. (21) and (22) with

boundary conditions (24)�/(25) can be solved analyti-

cally:

Xn�C0
n

�
1�exp

�
�

b(X3)

u

�
y?
�
; (29)

for n�/ 1, 2 being b�/Rn /Cn .

It remains X3 as unknown and it must be solved from

the single ODE Eq. (23) considering X1 and X2 as in Eq.

(29) and y ? as a parameter.

4. Results

In this section Eq. (23) is solved using the proposed

NN method and a traditional Runge�/Kutta method for

comparison of the solutions obtained.

It is important to remark an essential difference

between the two approaches. In the case of the tradi-

tional method the dimension y’ must be discretized into

y?i; and for each y?i Eq. (23) must be solved numerically.

On the other hand, if the NN method is applied, the
network can be trained over the (y ?, t ?) domain,

providing continuous solution for X3(y ?, t ?), which is

easier to include in the expressions for X1 and X2 given

in Eq. (29), and this training must be performed only

once.

The parameter values were k1�/72.5 cm/s; k2�/33.6

cm/s; D1�/D2�/0.03 cm2/s; r0�/0.6 cm; M�/160; r�/

3.5 g/cm3; u�/100 cm/s; a�/ 1/3; C0
A/�/2.4011�/10�5

mol/cm3; C0
B/�/1.8054�/10�5 mol/cm3; C0

S/�/0.0219

mol/cm3; AR�/2.84 cm2.The activation function used

in all the network units was:

g(x)�
2

(1 � exp(�2x))
�1: (30)

A neural network approximation of X3 with two units

in the input layer (corresponding to y ? and t ?), five units
in the hidden layer and one unit in the output layer, was

trained to solve the ODE Eq. (23) with boundary

condition Eq. (26).

The criteria for choosing the number of hidden layer,

was to select the simplest network’s architecture and the

less number of units that can solve the problem. Trial

and error beginning for one layer with few neurons show

good network’s capabilities. In general, if fewer hidden
units are used better generalization may be attained.

Besides, the training should be easier since fewer

parameters have to be adjusted.

The unsupervised error function was defined as stated

in Eq. (3) using the particular differential operators

given by Eqs. (23) and (26). As the boundary terms B
are smaller than the first term of the r.h.s. of Eq. (3) it

must be multiplied by an arbitrary factor (in our case, 10
(P�/PB)), in order to balance the error components. The

correct definition of the Error function is crucial to

succeed with the training and the fact that it is an

unsupervised problem makes the task more difficult.

The network was trained first using a genetic algo-

rithm to get promising regions of the error landscape.

Each individual has the weights and bias corresponding

to the network (5�/2�/5�/5�/1�/1�/21 parameters, in
the case of 5 hidden units). The mutation and crossover

operators were defined as stated by Montana and Davis

[21]. As the genetic algorithm has difficulties to find

exact minimums, a second training phase follows using a

gradient descent routine Eq. (4) with adaptative para-

meter h .

The training set was composed by P�/PB�/110

equidistant points into the range: t ?o[0, 1] and y ?o
[0, 1]. The mean squared error typically started around

E�/1 and it reached E�/2�/10�9. This error is

computed without the arbitrary factor multiplying

operator B .

The network was tested with points that did not

participate of the training. Fig. 1 shows the mean

squared error (E ) of the trained network as a function

of the number of testing points.
It can be observed that the averaged error is stable for

increasing number of testing points, which indicates that

the solution found is a good approximation of the real

solution not only for the training points but also over

the whole domain of the problem.

The genetic algorithm takes around 500 generations

and the gradient descent routine (4) takes approximately

2�/104 iterations to converge.
The whole training phase may take several minutes in

a PC. The particular method used for training the

network is not unique and perhaps not the best for
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unsupervised network, so more effort must be done in

order to improved its efficiency.

However, the computing time requirement of the

proposed NN method is not comparable with tradi-

tional numerical methods. Any numerical method gives

solution points over a selected grid. The computing

time, in this case, increases as the number of the grid

points increases. So, computing the solution for an

infinite number of points will need an infinite time. On

the other hand, the NN find a continuous solution over

the real domain in a finite time.

Once the NN X 3� is trained, a continuous ex-

pression*/with the form of Eq. (2)*/that approximates

X3 is obtained, which can be easily replaced in the X1

and X2 expressions, and in this way, continuous solu-

tions for the whole problem are found.

The present problem can also be solved by classical

numerical methods.

In order to compare and to validate the results

obtained by the neural network, the ODE problem

(23) is solved numerically with an explicit Runge�/Kutta

method based on the Dormand�/Prince pair [26]. As it

was said before, the y ? dimension must be discretized,

and for each y?i Eq. (23) must be integrated.

Using this method the absolute error is of the order of

10�5, which is similar to the absolute error found by the

NN. The computing time needed for integrate the

problem in a small grid of point is a few seconds, but

if the discretization of the domain contains about 1000

points for each variable, the computing time of the 1000

Runge�/Kutta (one for each y?i) resolutions is similar to

that of the NN training.

Figs. 2�/4 show the superposition of the continuous

solution*/obtained by the neural network approxima-

tion X 3� and by Eq. (29) for X1 (X 3�) and X2 (X 3�)/*/over

256 points covering the integration domain and the

Fig. 1. Mean squared error of the trained NN vs. number of testing

points into the integration domain.

Fig. 2. Neural network an traditional numerical method solutions of

Eq. (23) for X3.

Fig. 3. X1 solution (Eq. (29)) using X3 found by the two methods.

Fig. 4. X2 solution (Eq. (29)) using X3 found by the two methods.

D.R. Parisi et al. / Chemical Engineering and Processing 42 (2003) 715�/721 719



equivalent solution points obtained from the traditional

numerical method.

It can be seen that, for the 256 points plotted, there

are not appreciable differences between the solutions

found by both methods.

It must be noted that the trained neural network

provides a compact expression (Eq. (2)) for X3 (and

consequently for X1 and X2), which allows evaluating

any number of points spending a negligible computing

time and memory requirements. Also, the NN has the

flexibility to manage parameters as variables (like y ? in

the present example). These characteristics would be

especially useful when many simulations must be carried

out for optimization or control problems.
The same task could not be done so easily by a

traditional numerical integration since it would be

necessary to completely solve the problem each time

the parameters are changed and always the solution will

have a non-compact form (a list of points).

5. Conclusion

A new and powerful application of unsupervised

neural networks for solving differential equations was

implemented in a chemical engineering problem: a non-

steady state fixed bed solid�/gas reactor.

In order to validate the neural network solution,

comparison with a traditional numerical method

(Runge�/Kutta) was made. The solutions obtained in

both cases look identical.

The neural network was trained with a finite set of

input points (yi , ti) but it provides analytical solution at

any point (y , t) into the real integration domain,

keeping the same mean squared error level.

In contrast, the Runge�/Kutta method gives solution

points only over a predefined grid. Its PC time and

memory requirements can not be compared to that of

NN since they grow rapidly with the number of points in

the grid.

Finally, the neural network approximation of the

solution is a compact mathematical expression (Eq. (2)),

which can include any number of parameters as vari-

ables, and consequently, it is more adequate to be used

in optimization or control problems.
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Appendix A: Nomenclature

A gaseous reactant

B general differential operator defining the boundary
conditions

B gaseous reactant

b neuron bias

C concentration of the gas outside the pellet (mol/

cm3)

D effective diffusion coefficient (cm2/s)

D general differential operator

E unsupervised NN error function
f exact solution of D
f* neural network approximation of f

g neuron sigmoid activation function

k kinetic constant of the surface reaction (cm/s)

M molecular weight

np number of pellets per unit volume (1/cm3)

P number of sampling points

R reaction rate (mol/cm3 s)
r0 external radius of the pellet (cm)

rc radius of the unreacted core (cm)

S solid reactant

t time (s)

u gas velocity (cm/s)

w network’s adaptive coefficients (weights)

X extent of conversion of reactant (mol/cm3)

X* neural network approximation of X (mol/cm3)
x dummy variable

y space variable inside the reactor (cm)

z general vector variable of f

Subscripts

B over the boundaries

k k th general subscript of w

l lth general subscript of w

m m th reactant (gas or solid)

n n th reaction or n th gaseous reactant

q q th iteration step

s sth component of the networks’s output vector

u u th network’s neuron in the hidden layer

v v th component of the network’s input vector

Superscripts

i ith sampling point into the integration domain

j jth sampling point over the boundaries’ integration

domain

n number of dimensions of vector z

Greek letters

a stoichiometric coefficient

h adaptative learning rate
r density of the solid reactant (g/cm3)
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