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Kernels are valuable tools in various fields of numerical analysis, including
approximation, interpolation, meshless methods for solving partial differential
equations, neural networks, and machine learning. This contribution explains
why and how kernels are applied in these disciplines. It uncovers the links
between them, in so far as they are related to kernel techniques. It addresses
non-expert readers and focuses on practical guidelines for using kernels in
applications.
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1. Introduction

This article can be seen as an extension of Martin Buhmann’s presentation
of radial basis functions (Buhmann 2000) in this series. But we shall take
a somewhat wider view and deal with kernels in general, focusing on their
recent applications in areas such as machine learning and meshless methods
for solving partial differential equations.

In their simplest form, kernels may be viewed as bell-shaped functions
like Gaussians. They can be shifted around, dilated, and superimposed
with weights in order to form very flexible spaces of multivariate functions
having useful properties. The literature presents them under various names
in contexts of different numerical techniques, for instance as radial basis
functions, generalized finite elements, shape functions or even particles.
They are useful both as test functions and trial functions in certain meshless
methods for solving partial differential equations, and they arise naturally as
covariance kernels in probabilistic models. In the case of learning methods,
sigmoidal functions within neural networks were successfully superseded by
radial basis functions, but now they have both been replaced by kernel
machines1 to implement the most successful algorithms for machine learning
(Schölkopf and Smola 2002, Shawe-Taylor and Cristianini 2004). Even the
term kernel engineering has been coined recently, because efficient learning
algorithms require specially tailored application-dependent kernels.

With this slightly chaotic background in mind, we survey the major ap-
plication areas while focusing on a few central issues that lead to guidelines
for practical work with kernels. Section 2 starts with a general definition
of kernels and provides a short account of their properties. The main rea-
sons for using kernels at all will be described in Section 3, starting with
their ability to recover functions optimally from given unstructured data.
At this point, the connections between kernel methods for interpolation,
approximation, learning, pattern recognition, and PDE solving become ap-
parent. The probabilistic aspects of kernel techniques follow in Section 4,
while practical guidelines for constructing new kernels follow in Section 5.
Special application-oriented kernels are postponed to Section 6 to avoid too
much detail at the beginning.

Since one of the major features of kernels is to generate spaces of trial
functions with excellent approximation properties, we devote Section 7 to
a short account of the current results concerning such questions. Together
with strategies to handle large and ill-conditioned systems (Section 8), these
results are of importance to the applications that follow later.

After a short interlude on kernels on spheres in Section 9 we start our
survey of applications in Section 10 by looking at interpolation problems

1 http://www.kernel-machines.org
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first. These take advantage of the abilities of kernels to handle unstructured
Birkhoff-type data while producing solutions of arbitrary smoothness and
high accuracy. Then we review kernels in modern learning algorithms, but
we can keep this section short because there are good books on the subject.

In Section 12 we survey meshless methods (Belytschko, Krongauz, Organ,
Fleming and Krysl 1996b) for solving partial differential equations. We de-
scribe the different techniques currently sailing under this flag, and point
out where and how kernels occur. Owing to an existing survey (Babuška,
Banerjee and Osborn 2003) in this series, we keep the generalized finite ele-
ment method short here, but we incorporate meshless local Petrov–Galerkin
techniques (Atluri and Shen 2002).

The final two sections then focus on purely kernel-based meshless meth-
ods. We treat applications of symmetric and unsymmetric collocation, of
kernels providing fundamental and particular solutions, and provide the
state of the art of their mathematical foundation.

Altogether, we want to keep this survey digestible for the non-expert and
casual reader who wants to know roughly what has happened so far in the
area of application-oriented kernel techniques. This is why we omit most
of the technical details and focus on the basic principles. Consequently,
we have to refer as much as possible to background reading for proofs and
extensions. Fortunately, there are two recent books, Buhmann (2004) and
Wendland (2005b), which contain the core of the underlying general mathe-
matics for kernels and radial basis functions. For kernels in learning theory,
we have already cited two other books, Schölkopf and Smola (2002) and
Shawe-Taylor and Cristianini (2004), providing further reading. If we omit
pointers to proofs, these books will contain what is needed.

Current books and survey articles in the area of meshless methods are
rather specialized, because they focus either on certain classes of methods
or on applications. We cite them as needed, placing them into a more general
context. Clearly, the list of references cannot contain all available papers
on all possible kernel applications. This forces us to select a very small
subset, and our main selection criterion is how a certain reference fits into
the current line of argument at a certain place of this survey. Incorporation
or omission of a certain publication does not express our opinion on its
importance in general.

2. Kernels

Definition 2.1. A kernel is a function

K : Ω × Ω → R

where Ω can be an arbitrary nonempty set.
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Some readers may consider this to be far too general. However, in the
context of learning algorithms, the set Ω defines the possible learning inputs.
Thus Ω should be sufficiently general to allow Shakespeare texts or X-ray
images, i.e., Ω should preferably have no predefined structure at all. Thus
the kernels occurring in machine learning are extremely general, but they
still take a special form which can be tailored to meet the demands of
applications. We shall now explain the recipes for their definition and usage.

2.1. Feature maps

In certain situations, a kernel is given a priori , e.g., the Gaussian

K(x, y) := exp(−‖x− y‖2
2) for all x, y ∈ Ω := R

d. (2.1)

Each specific choice of a kernel has a number of important and possibly
unexpected consequences which we shall describe later.

If no predefined kernel is available for a certain set Ω, an application-
dependent feature map Φ : Ω → F with values in a Hilbert ‘feature’ space
F is defined. It should provide for each x ∈ Ω a large collection Φ(x) of
features of x which are characteristic for x and which live in the Hilbert
space F of high or even infinite dimension. Note that F has plenty of useful
structure, while Ω does not.

Guideline 2.2. Feature maps Ω → F allow us to apply linear techniques
in their range F , while their domain Ω is an unstructured set. They should
be chosen carefully in an application-dependent way, capturing the essentials
of elements of Ω.

With a feature map Φ at hand, there is a kernel

K(x, y) :=
(
Φ(x),Φ(y)

)
F for all x, y ∈ Ω. (2.2)

In another important class of cases, the set Ω consists of random variables.
Then the covariance between two random variables x and y from Ω is a
standard choice of a kernel. These and other kernels arising in nondeter-
ministic settings will be the topic of Section 4. The connection to learning
is obvious: two learning inputs x and y from Ω should be very similar, if
they are closely ‘correlated’, if they have very similar features, or if (2.2)
takes large positive values. These examples suggest the following definition.

Definition 2.3. A kernel K is symmetric if K(x, y) = K(y, x) holds for
all x, y ∈ Ω.

2.2. Spaces of trial functions

A kernel K on Ω defines a function K(·, y) for all fixed y ∈ Ω. This allows
us to generate and manipulate spaces

K0 := span{K(·, y) : y ∈ Ω} (2.3)
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of functions on Ω. In learning theory, the function K(·, y) = (Φ(·),Φ(y))F
relates each other input object to a fixed object y via its essential features.
But in general K0 just provides a handy linear space of trial functions on
Ω which is extremely useful for most applications of kernels, e.g., when Ω
consists of texts or images. For example, in meshless methods for solving
partial differential equations, certain finite-dimensional subspaces of K0 are
used as trial spaces to furnish good approximations to the solutions.

2.3. Convolution kernels

In certain other cases, the set Ω carries a measure µ, and then, under rea-
sonable assumptions like f, K(y, ·) ∈ L2(Ω, µ), the generalized convolution

K ∗Ω f :=
∫

Ω
f(x)K(·, x) dµ(x) (2.4)

defines an integral transform f �→ K ∗Ω f which can be very useful. Note
that Fourier or Hankel transforms arise this way, and recall the role of
the Dirichlet kernel in the Fourier analysis of univariate periodic functions.
The above approach to kernels via convolution works on locally compact
topological groups using Haar measure, but we do not want to pursue this
detour into abstract harmonic analysis too far. For space reasons, we also
have to exclude complex-valued kernels and all transform-type applications
of kernels here, but it should be pointed out that wavelets are special kernels
of the above form, defining the continuous wavelet transform this way.

Note that discretization of the integral in the convolution transform leads
to functions in the space K0 from (2.3). Using kernels as trial functions
can be viewed as a discretized convolution. This is a very useful fact in the
theoretical analysis of kernel-based techniques.

Guideline 2.4. Kernels have three major application fields: they generate
convolutions, trial spaces, and covariances. The first two are related by
discretization.

2.4. Scaling

Another important aspect in all kernel-based techniques is the scaling prob-
lem. If the kernel K in the convolution equation (2.4) is a sharp nonnegative
spike with integral one, the convolution will reproduce f approximately, and
the distributional ‘delta kernel’ will reproduce f exactly. This is theoret-
ically nice, but discretization will need a very fine spatial resolution. On
the other hand, convolution with a nonnegative smooth kernel of wide or
infinite support acts as a smoothing operator which will not have good re-
production quality. To control this trade-off between approximation and
smoothing, many kernel applications involve a free scaling parameter, and
it is a serious problem to derive good strategies for its determination.
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Guideline 2.5. Success and failure of kernel usage may crucially depend
on proper scaling.

The scaling problem will come up at various places in this article.

2.5. Positive definiteness

For many applications, the space K0 needs more structure. In fact, it can
be turned into a Hilbert space via the following construction.

Definition 2.6. A symmetric kernel K is positive (semi-) definite if, for
all finite subsets X := {x1, . . . , xN} of distinct points of Ω, the symmetric
kernel matrices AK,X with entries K(xj , xk), 1 ≤ j, k ≤ N are positive
(semi-) definite.

We delay the definition of conditionally positive definite kernels to Sec-
tion 6. For a symmetric positive definite kernel K on Ω, the definition

(K(x, ·),K(y, ·))K = (K(·, x),K(·, y))K := K(x, y) for all x, y ∈ Ω (2.5)

of an inner product of two generators of K0 easily generalizes to an inner
product on all of K0 such that∥∥∥∥∥

N∑
j=1

αjK(·, xj)

∥∥∥∥∥
2

K
:=

N∑
j,k=1

αjαkK(xj , xk) = αTAK,Xα (2.6)

defines a numerically accessible norm on K0 which allows us to construct a
native Hilbert space

K := closK0 (2.7)

as the completion, or Hilbert space closure, of K0 under the above norm.
In most cases, the space K is much richer than K0 and does not seem to
have any explicit connection to the kernel from which it is generated. For
instance, Sobolev spaces K = W k

2 (Rd) with k > d/2 result from the kernel

K(x, y) = ‖x− y‖k−d/2
2 Kk−d/2(‖x− y‖2) (2.8)

where Kν is the Bessel function of third kind. Starting from (2.8) it is
not at all clear that the closure (2.7) of the span (2.3) of all translates of
K generates the Sobolev space W k

2 (Rd). But it should be clear that the
native Hilbert space for a kernel has important consequences for any kind
of numerical work with the trial space K0 of (2.3).

Guideline 2.7. User of kernel techniques should always be aware of the
specific native Hilbert space associated to the kernel.

Under certain additional assumptions, there is a one-to-one correspon-
dence between symmetric positive definite kernels and Hilbert spaces of
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functions, so that such kernels cannot be separated from their native Hilbert
space.

However, note that in general the Hilbert spaces F from (2.2) and K from
(2.5) are different. The space K is always a Hilbert space of functions on
Ω, while the ‘feature space’ F in general is not. However, the two notions
coincide if we start with a given kernel, not with a feature map.

Theorem 2.8. Every symmetric positive definite kernel can be generated
via a suitable feature map.

Proof. Given a symmetric positive definite kernelK, define Φ(x) := K(x, ·)
and F := K using (2.5) to get (2.2).

2.6. Reproduction

By construction, the spaces K and K0 have a nice structure now, and there
is a reproduction property

f(x) := (f,K(·, x))K for all f ∈ K, x ∈ Ω (2.9)

for all functions in K. At this point, we are on the classical ground of
reproducing kernel Hilbert spaces (RKHS) with a long history (Aronszajn
1950, Meschkowski 1962, Atteia 1992).

Guideline 2.9. Positive definite kernels reproduce all functions from their
associated native Hilbert space. On the trial space (2.3) of translated pos-
itive definite kernels, the Hilbert space norm can be numerically calculated
by plain kernel evaluations, without integration or derivatives. This is par-
ticularly useful if the Hilbert space norm theoretically involves integration
and derivatives, e.g., in the case of Sobolev spaces.

2.7. Invariance

Guideline 2.10. If the set Ω has some additional geometric structure,
kernels may take a simplified form, making them invariant under geometric
transformations on Ω.

For instance, kernels of the form

K(x− y) are translation-invariant on abelian groups
K(xT y) are zonal on multivariate spheres
K(‖x− y‖2) are radial on R

d

with a slight abuse of notation. Radial kernels are also called radial ba-
sis functions, and they are widely used because of their invariance under
Euclidean (rigid-body-) transformations in R

d. The most important exam-
ple is the Gaussian kernel of (2.1), which is symmetric positive definite on
R

d, for any space dimension d. It naturally arises as a convolution kernel,
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a covariance, a perfectly smooth trial function, and a multivariate probabil-
ity density, illustrating the various uses of kernels. Less obvious is the fact
that it has a native Hilbert space of analytic functions on R

d.

2.8. Metric structure

In many applications, for instance in machine learning, the kernel value
K(x, y) increases with the ‘similarity’ of x and y, like a correlation or a co-
variance, and is bell-shaped like the Gaussian. More precisely, any symmetric
positive definite kernelK generates a distance metric d : Ω×Ω → [0,∞) via

d2(x, y) := K(x, x) − 2K(x, y) +K(y, y) for all x, y ∈ Ω (2.10)

on a general set (Schoenberg 1937, Stewart 1976). Looking back at feature
maps, we see that a well-chosen feature map defines a kernel that introduces
a metric structure on the set Ω for which ‘close’ elements have ‘similar’
features.

Guideline 2.11. Symmetric positive definite kernels on Ω introduce a
‘geometry’ on the set Ω which can be tailored to meet the demands of
applications.

The art of kernel engineering is to do this in a best possible way, depend-
ing on the application in question.

3. Optimal recovery

One of the key advantages of kernels is as follows.

Guideline 3.1. Kernel-based methods can make optimal use of the given
information.

Results like this come up at various places in theory and applications,
and they have a common background linking them to the interesting fields
of information-based complexity2 (Traub and Werschulz 1998) and optimal
recovery (Micchelli, Rivlin and Winograd 1976, Micchelli and Rivlin 1977)
which we have to ignore here. In a probabilistic context, Guideline 3.1 can
be forged into an exact statement using Bayesian arguments, but we want
to keep things simple first and postpone details to Section 4.

3.1. Recovery from unstructured data

Assume that we want to model a black-box transfer mechanism like Fig-
ure 3.1 that replies to an input x ∈ Ω by an output f(x) ∈ R. This can be
the reaction f(x) of a well-trained individual or machine to a given stimulus

2 http://www.ibc-research.org
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Figure 3.1. A black-box response mechanism.

x given to it. Finding a good response mechanism f can be called learning
or black-box modelling. If the output should take only a finite number of
possible values, this is pattern recognition or classification. We shall use the
term ‘recovery problem’ (Micchelli et al. 1976, Micchelli and Rivlin 1977)
to summarize all of these situations, which mathematically require the de-
termination of a function. But we want to stick to an application-oriented
view here.

At this point we do not have any further information on the model or
the intended reactions to the stimuli. But usually we have some examples
of ‘good behaviour’ that can be used. These take the form of a sequence
(x1, y1), . . . , (xN , yN ) of unstructured training data, pairing inputs xj ∈ Ω
with their expected responses yj ∈ R. The recovery task now is to find a
function f such that

f(xj) ≈ yj , 1 ≤ j ≤ N, (3.1)

and this is a standard interpolation or approximation problem, though posed
on an unstructured set Ω using unstructured data.

If we slightly extend the meaning of the word ‘data’, we can try to find a
smooth function f such that

(−∆f)(yj) ≈ ϕ(yj), 1 ≤ j ≤M,

f(zk) ≈ ψ(zk), M + 1 ≤ k ≤ N,
(3.2)

where y1, . . . , yM are points in a bounded domain Ω while zM+1, . . . , zN lie
on the boundary. This would hopefully provide an approximate solution f
to the Poisson problem

(−∆f)(y) = ϕ(y), y ∈ Ω,
f(z) = ψ(z), z ∈ ∂Ω,

for given functions ϕ on Ω and ψ on ∂Ω. Note that this collocation technique
is again a recovery problem for a function f from certain of its data, just
replacing point evaluations in (3.1) by evaluations of certain derivatives. In
general, one can replace (3.1) by

λj(f) ≈ yj , 1 ≤ j ≤ N, (3.3)

for a set of given linear data functionals λ1, . . . , λN generalizing the point
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evaluation functionals δx1 , . . . , δxN of (3.1). Tradition in approximation the-
ory would call this a recovery problem from Hermite–Birkhoff data, if the
data functionals are evaluations of derivatives at points. But there are much
more general functionals, e.g., those defining weak data via

λj(f) =
∫

Ω
∇f · ∇vj

as in finite elements, using a test function vj . This way, finite element
methods for solving linear partial differential equations can be written as
recovery problems (3.3).

For later sections of this article, the reader should keep in mind that
suitable generalizations (3.3) of the recovery problem (3.1) lead to methods
for solving partial differential equations. We shall stick to the simple form
of (3.1) for a while, but when reviewing large parts of numerical analysis,
e.g., finite element techniques, we have the following heuristic.

Guideline 3.2. Many applications can be rephrased as recovery problems
for functions from unstructured data.

3.2. Generalization

The resulting model function f should be such that it generalizes well,
i.e., it should give practically useful responses f(x) to new inputs x ∈ Ω.
Furthermore, it should be stable in the sense that small changes in the
training data do not change f too much. But these goals are in conflict
with good reproduction of the training data. A highly stable but useless
model would be f = 1, while overfitting occurs if there is too much emphasis
on data reproduction, leading to unstable models with bad generalization
properties.

Guideline 3.3. Recovery problems are subject to the reproduction–gene-
ralization dilemma and need a careful balance between generalization and
stability properties on one hand, and data reproduction quality on the other.

This is also called the bias-variance dilemma under certain probabilistic
hypotheses, but it also occurs in deterministic settings.

Given a recovery problem as in (3.1), there is not enough information to
come up with a useful solution of the recovery problem. In particular, we
have no idea how to define f or from which space of functions to pick it from.
From a theoretical point of view, we are facing an ill-posed problem with
plenty of indistinguishable approximate solutions. From a practical point of
view, all mathematical a priori assumptions on f are useless because they
do not take the application into account.

Instead, one should use additional application-dependent information con-
cerning the essentials of the inputs, e.g., define a feature map Φ : Ω → F
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as in (2.2), taking an object x to an object Φ(x) in F containing all essential
features of x. With this additional information, we can define a kernel K
using (2.2), and we get a space K of functions on Ω via (2.3) and (2.7).
Since K usually turns out to be rather large (see the example in (2.8) for
Sobolev spaces), this space serves as a natural reservoir from which to pick
f , and if we have no other information, there is no other choice for a space
defined on all of Ω. Of course, the choice of a feature map is just another
way of adding hypotheses, but it is one that can be tailored perfectly to the
application, using kernel engineering knowledge.

3.3. Optimality

We are now left with the problem to pick f somehow from the space K,
using our training set. If we insist on exact recovery, we get an instance of
Guideline 3.1 from the following theorem.

Theorem 3.4. Let the kernel K be symmetric positive definite. Then a
function of the form

f∗ :=
N∑

k=1

αkK(·, xk) (3.4)

is the unique minimizer of the Hilbert space norm in K amongst all functions
f ∈ K with f(xj) = yj , 1 ≤ j ≤ N . The coefficients αk can be calculated
from the linear system

N∑
k=1

αkK(xj , xk) = yj , 1 ≤ j ≤ N. (3.5)

As Section 4 will show, the system (3.5) also arises for different nonde-
terministic recovery problems in exactly the same way, but with different
semantics.

Clearly, symmetric positive definiteness of the kernel implies positive def-
initeness of the kernel matrix AK,X in (3.5) which we saw in Definition 2.6.

Guideline 3.5. Interpolation of unstructured data using a kernel is an
optimal strategy for black-box modelling and learning from noiseless infor-
mation.

The essential information on the application is built into the kernel. Once
the kernel is there, things are simple, theoretically. The generalization error
is optimal in the following sense.

Theorem 3.6. Consider all possible linear recovery schemes of the form

fu(·) :=
N∑

j=1

uj(·)f(xj)
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which use the training data (xj , yj) = (xj , f(xj)), 1 ≤ j ≤ N for an un-
known model f ∈ K and employ arbitrary functions uj on Ω. Then the
approximate solution f∗ of Theorem 3.4 satisfies

inf
u

sup
‖f‖K≤1

|f(x) − fu(x)| = sup
‖f‖K≤1

|f(x) − f∗(x)| for all x ∈ Ω (3.6)

and it has the form f∗ = fu∗ with Lagrange-type functions u∗1(x), . . . , u∗N (x)
from span{K(·, xj) : 1 ≤ j ≤ N} satisfying

N∑
j=1

u∗j (x)K(xj , xk) = K(x, xk), 1 ≤ k ≤ N, for all x ∈ Ω. (3.7)

Note that this is another instance of Guideline 3.1. The optimality results
of the previous theorems are well-known properties of univariate splines.

Guideline 3.7. In the context of optimal recovery, kernel methods pro-
vide natural multivariate extensions of classical univariate spline techniques.

For later reference in Section 4, we should explain the connection between
the linear systems (3.5) and (3.7) on one hand, and the representations (3.4)
and (3.6) on the other. Theorem 3.4 works on the basis K(·, xk) directly,
while Theorem 3.6 produces a new basis of functions u∗j which has the
Lagrangian property u∗j (xk) = δjk but spans the same space. The optimal
recovery solutions coincide, but have different basis representations.

This basis change, if executed only approximately, is important for appli-
cations. In fact, transition to a local Lagrange or ‘cardinal’ basis is one of the
possible preconditioning strategies (Faul and Powell 1999, Ling and Kansa
2004, Brown, Ling, Kansa and Levesley 2005, Ling and Kansa 2005), and ap-
proximate Lagrangian bases yield quasi-interpolants (Buhmann 1988, Beat-
son and Light 1993, Buhmann 1993, Buhmann, Dyn and Levin 1995, Maz’ya
and Schmidt 2001) which avoid solving linear systems because they provide
approximate inverses. This is a promising research area.

3.4. Generalized recovery

If the recovery problem (3.1) is generalized to (3.3), there is a similar theory
(Wu 1992, Luo and Levesley 1998) concerning optimal recovery, replacing
the kernel matrix with entries K(xj , xk) by a symmetric matrix with el-
ements λx

jλ
y
kK(x, y), where we used an upper index x at λx to indicate

that the functional λ acts with respect to the variable x. The system (3.5)
becomes

N∑
k=1

αkλ
x
jλ

y
kK(x, y) = yj , 1 ≤ j ≤ N, (3.8)
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while (3.7) will turn into

N∑
j=1

u∗j (x)λ
x
jλ

y
kK(x, y) = λy

kK(x, y), 1 ≤ k ≤ N, for all x ∈ Ω.

Guideline 3.8. Kernel methods can recover a function f from very gen-
eral unstructured data, if the kernel is sufficiently smooth and the ‘data’ of
f are linear functionals acting on f .

This is used in applications described in Section 10. In the case of the re-
covery problem (3.2), we get a symmetric meshless collocation technique for
solving Poisson’s equation. This will be treated in more detail in Section 14.

3.5. Error, condition, and stability

Let us go back to the generalization error. We shall see in Section 7 that
the generalization error of kernels on R

d dramatically improves with their
smoothness while still maintaining applicability to recovery problems with
unstructured data. This is one of the key features of kernel techniques.

Guideline 3.9. Methods based on fixed smooth positive definite kernels
can provide recovery techniques with very small errors, using rather small
amounts of data.

But the small generalization error comes at a high price, because there
are serious practical problems with systems of the form (3.5). This is in
sharp contrast to the encouraging optimality properties stated so far.

Guideline 3.10. The linear systems (3.5) and (3.8) can be very large,
non-sparse and severely ill-conditioned.

However, the latter is no surprise because the method solves an ill-posed
problem approximately. Thus the bad condition of the system (3.5) must be
expected somehow. There is an apparent link between condition and scaling,
since kernels with small supports will lead to approximately diagonal kernel
matrices, while kernels with wide scales produce matrices with very similar
rows and columns.

Guideline 3.11. Positive definite kernels with small scales lead to better
matrix condition than kernels with wide scales.

Since we know that kernel systems (3.5) or (3.8) are solvable for symmetric
positive definite kernels and linearly independent data functionals, we have
the following guideline.

Guideline 3.12. Methods based on positive definite kernels have a built-
in regularization.
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In fact, they solve the ill-posed problem (3.1) by providing an approximate
solution minimizing the Hilbert space norm in K under all conceivable exact
recovery schemes, as if they were using a regularizing penalty term of the
form ‖f‖2

K, which can be a Sobolev space norm for certain kernels. This
regularization property will come up later when we use kernels in collocation
techniques for solving partial differential equations. If (3.5) is viewed as an
approximate solution of the integral equation∫

Ω
α(x)K(y, x) dx = f(y) for all y ∈ Ω

via a quadrature formula, we have another aspect telling us that (3.5) solves
an ill-posed problem approximately via some regularization in the back-
ground. Note the connection to convolution (2.4).

The generalization error f(x) − f∗(x) and the condition of the system
(3.5) have an unexpected connection. Theoretical results (Schaback 1995a)
and simple numerical experiments with various kernels show the following.

Guideline 3.13. Increasing smoothness of kernels on R
d decreases the

recovery error but increases the condition of the system (3.5). There are no
kernels that provide small errors and good condition simultaneously.

Guideline 3.14. Increasing the scale of a kernel on R
d decreases the re-

covery error but increases the condition of the system (3.5).

Note that this limits the use of systems like (3.5) in their original form,
but techniques like preconditioning (Faul and Powell 1999, Ling and Kansa
2004, Brown et al. 2005, Ling and Kansa 2005) or domain decomposition
(see Section 8) should be applied.

Guideline 3.15. Programming of kernel methods should always use the
kernel scaling as an adjustable parameter. Experiments with different scales
often show that systems without preconditioning give best results when the
scaling is as wide as numerically feasible. Following Guideline 3.17 below,
one should use pivoting or SVD techniques, and this can work well beyond
the standard condition limit of 1015.

Reasons for this will be given at the end of this section. The limit be-
haviour of recovery problems for analytic kernels with increasing width is
related to multivariate polynomials (Driscoll and Fornberg 2002). Unex-
pectedly, function recovery problems using wide-scaled Gaussians tend to
the polynomial interpolation method of de Boor and Ron, if the scales get
infinitely wide (Schaback 2005a). This will hopefully lead to a better un-
derstanding of preconditioning techniques in the future.



Kernel techniques: From machine learning to meshless methods 557

3.6. Relaxation and complexity

If N is huge, the exact solution (3.4) of a system (3.5) is much too complex
to be useful. This is where another general rule comes up.

Guideline 3.16. Within kernel methods, relaxation of requirements can
lead to reduction of complexity.

Under certain probabilistic hypotheses, this is another aspect of the bias-
variance dilemma related to overfitting. As we mentioned at the beginning,
insisting on exact reproduction of huge amounts of data increases the com-
plexity of the model and makes it very sensible to changes in the training
data, thus less reliable as a model. Conversely, relaxing the reproduction
quality will allow a simpler model. Before we turn to specific relaxation
methods used in kernel-based learning, we should look back at Guideline 3.9
to see that badly conditioned large systems of the form (3.5) using smooth
kernels will often have subsystems that provide good approximate solutions
to the full system. This occurs if the generalization error is small when
going over from the training data of a subset to the full training data. Thus
Guideline 3.16 can be satisfied by simply taking a small suitable subset of
the data, relying on Guideline 3.9. As we shall see, this has serious impli-
cations for kernel-based techniques for solving partial differential equations
or machine learning. For simple cases, the following suffices.

Guideline 3.17. Within kernel methods, large and ill-conditioned sys-
tems often have small and better conditioned subsystems furnishing good
approximate solutions to the full system. Handling numerical rank loss by
intelligent pivoting is useful.

However, large problems need special treatment, and we shall deal with
such cases in Section 8.

The relaxation of (3.5) towards (3.1) can be done in several ways, and
learning theory uses loss functions to quantify the admissible error in (3.1).
We present this in Section 11 in more detail. Let us look at a simple special
case. We allow a uniform tolerance ε on the reproduction of the training
data, i.e., we impose the linear constraints

−ε ≤ f(xj) − yj ≤ ε, 1 ≤ j ≤ N. (3.9)

We then minimize ‖f‖K while keeping ε fixed, or we minimize the weighted
objective function 1

2‖f‖2
K+Cε when ε is varying and C is fixed. Optimization

theory then tells us that the solution f∗ is again of the form (3.4), but the
Kuhn–Tucker conditions imply that the sum only contains terms where the
constraints in (3.9) are active, i.e., αk 
= 0 holds only for those k with
|f(xk) − yk| = ε. In view of principle (3.9) these support vectors will often
be a rather small subset of the full data, and they provide an instance
of complexity reduction via relaxation according to Guideline 3.16. This
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roughly describes the principles behind support vector machines for the
implementation of learning algorithms. These principles are consequences
of optimization, not of statistical learning theory, and they arise in other
applications as well. We explain this in some more detail in Section 11 and
apply it to adaptive collocation solvers for partial differential equations in
Section 14.

Furthermore, we see via this optimization argument that the exact solu-
tion of a large system (3.5) can be replaced by an approximate solution of
a smaller subsystem. This supports Guideline 3.17 again. It is in sharpest
possible contrast to the large linear systems arising in finite element theory.

Guideline 3.18. Systems arising in kernel-based recovery problems should
be solved approximately by adaptive or optimization algorithms, finding
suitable subproblems.

At this point, the idea of online learning is helpful. It means that the
training sample is viewed as a possibly infinite input sequence (xj , yj) ≈
(xj , f(xj)), j = 1, 2, . . . which is used to update the current model function
fk if necessary. The connection to adaptive recovery algorithms is clear,
since a new training data pair (xN+1, yN+1) will be discarded if the current
model function fk works well on it, i.e., if fk(xN+1)−yN+1 is small. Other-
wise, the model function is carefully and efficiently updated to make optimal
use of the new data (Schaback and Werner 2006). Along these lines, one can
devise adaptive methods for the approximate solution of partial differential
equations which ‘learn’ the solution in the sense of online learning, if they
are given infinitely many data of the form (3.2).

Within approximation theory, the concept of adaptivity is closely related
to the use of dictionaries and frames. In both cases, the user does not
work with a finite and small set of trial functions to perform a recovery.
Instead, a selection from a large reservoir of possible trial functions is made,
e.g., by greedy adaptive methods or by choosing frame representations with
many vanishing coefficients via certain projections. This will be a promising
research area in the coming years.

The final sections of this article will review several application areas of
kernel techniques. However, we shall follow the principles stated above, and
we shall work out the connections between recovery, learning, and equation
solving at various places. This will have to start with a look at nondeter-
ministic recovery problems.

4. Kernels in probabilistic models

There are several different ways in which kernels arise in probability theory
and statistics. We shall describe the most important ones very briefly, ignor-
ing the standard occurrence of certain kernels like the Gaussian as densities
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of probability distributions. Since Acta Numerica is aiming at readers in
numerical analysis, we want to assume as little stochastic background as
possible.

4.1. Nondeterministic recovery problems

If we go back to the recovery problem of Section 3 and rewrite it in a nat-
ural probabilistic setting, we get another instance of Guideline 3.1, because
kernel-based techniques again turn out to have important optimality prop-
erties. Like in Section 3 we assume that we want to find the response f(x)
of an unknown model function f at a new point x of a set Ω, provided
that we have a sample of input-response pairs (xj , yj) = (xj , f(xj)) given
by observation or experiment. But now we assume that the whole setting
is nondeterministic, i.e., the response yj at xj is not a fixed function of xj

but rather a realization of a real-valued random variable Z(xj). Thus we
assume that for each x ∈ Ω there is a real-valued random variable Z(x) with
expectation E(Z(x)) and bounded positive variance E((Z(x) − E(Z(x))2).
The goal is to get information about the function E(Z(x)) which replaces
our f in the deterministic setting. For two elements x, y ∈ Ω the random
variables Z(x) and Z(y) will not be uncorrelated, because if x is close to y
the random experiments described by Z(x) and Z(y) will often show similar
behaviour. This is described by a covariance kernel

cov(x, y) := E(Z(x) · Z(y)) for all x, y ∈ Ω. (4.1)

Such a kernel exists and is positive semidefinite under weak additional as-
sumptions. If there are no exact linear dependencies in the random vari-
ables Z(xi), a kernel matrix with entries cov(xj , xk) will be positive def-
inite. A special case is a Gaussian process on Ω, where for every subset
X = {x1, . . . , xN} ⊂ Ω the vectors ZX := (Z(x1), . . . , Z(xN )) have a mul-
tivariate Gaussian distribution with mean E(ZX) ∈ R

N and a covariance
yielding a matrix A ∈ R

N×N which has entries cov(xj , xk) in the above
sense. Note that this takes us back to the kernel matrix of Definition 2.6
and the system (3.5).

Now there are several equivalent approaches to produce a good estimate
for Z(x) once we know data pairs (xj , yj) where the yj are noiseless realiza-
tions of Z(xj). The case of additional noise will be treated later.

First, Bayesian thinking asks for the expectation of Z(x) given the infor-
mation Z(x1) = y1, . . . , Z(xN ) = yN and write this as the expectation of a
conditional probability

Z̃(x) := E(Z(x)|Z(x1) = y1, . . . , Z(xN ) = yN ).

This is a function of x and all data pairs, and it serves as an approximation
of E(Z(x)).
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Second, estimation theory looks at all linear estimators of the form

Z̃(x) :=
N∑

j=1

uj(x)yj

using the known data to predict Z(x) optimally. It minimizes the risk
defined as

E

((
Z(x) −

N∑
j=1

uj(x)Z(xj)

)2)
by choosing appropriate coefficients uj(x).

Both approaches give the same result, repeating Theorems 3.4 and 3.6
with a new probabilistic interpretation. Furthermore, the result is compu-
tationally identical to the solution of the deterministic case using the kernel
K(x, y) = cov(x, y) right away, ignoring the probabilistic background com-
pletely. The system (3.5) has to be solved for the coefficients αk, and the
result can be written via either (3.4) or Theorem 3.6. The proof of this
theorem is roughly the same as that for the estimation theory case in the
probabilistic setting.

Guideline 4.1. Positive definite kernels allow a unified treatment of deter-
ministic and probabilistic methods for recovery of functions from data.

Guideline 4.2. Applications using kernel-based trial spaces in non-deter-
ministic settings should keep in mind that what they do is equivalent to an
estimation process for spatial random variables with a covariance described
by the chosen kernel.

This means that compactly supported or quickly decaying kernels lead to
uncoupled spatial variables at larger distances. Furthermore, it explains why
wide scales usually allow us to get along with fewer data (see Guideline 3.14).
If there is a strong interdependence of local data, it suffices to use few data
to explain the phenomena.

If the covariance kernel is positive definite, the general theory of Sec-
tion 2 applies. It turns the space spanned by functions cov(·, y) on Ω into
a reproducing kernel Hilbert space such that the inner product of two such
functions is expressible via (2.5) by the covariance kernel itself. This is not
directly apparent from where we started. In view of learning theory, the
map x �→ cov(x, y) is a special kind of feature map which assigns to each
other input x a number indicating how closely related it is to y.

4.2. Noisy data

If we add a noise variable ε(x) at each point x ∈ Ω with mean zero and
variance σ2 such that the noise at different points is independent and also
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independent of Z, the covariance kernel with noise is

E((Z(x) + ε(x)) · (Z(y) + ε(y))) = cov(x, y) + σ2δxy.

Thus, in the presence of noise we have to add a diagonal matrix with entries
σ2 to the kernel matrix in (3.5). This addition of noise makes the kernel ma-
trices positive definite even if the covariance kernel is only positive semidef-
inite. In a deterministic setting, this reappears as relaxed interpolation and
will be treated in Section 7.

If there is no a priori information on the covariance kernel and the noise
variance σ, one can try to estimate these from a sufficiently large data sam-
ple. For details we refer to the vast statistical literature concerning noise
estimation and techniques like cross-validation. Choosing the relaxation pa-
rameter in the deterministic case will be treated in some detail in Section 7,
with references given there.

4.3. Random functions

In the above situation we had a random variable Z(x) at each point x ∈ Ω.
But one can also consider random choices of functions f from a set or space
F of real-valued functions on Ω. This requires a probability measure ρ on
F , and one can define another kind of covariance kernel via

cov(x, y) := E(f(x) · f(y))

=
∫
F
f(x)f(y) dρ(f) for all x, y ∈ Ω (4.2)

=
∫
F
δx(f)δy(f) dρ(f) for all x, y ∈ Ω.

This is a completely different situation, both mathematically and ‘experi-
mentally’, because the random events and probability spaces are different.

But now the connection to Hilbert spaces and feature maps is much clearer
right from the start, since the final form of the covariance kernel can be seen
as a bilinear form cov(x, y) = (δx, δy) in a suitable space. For this, we define
a feature map

Φ(x) := δx : f �→ f(x) for all f ∈ F (4.3)

as a linear functional on F . To a fixed input item x it assigns all possible
‘attributes’ or ‘features’ f(x) where f varies over all random functions in
F . If we further assume that the range of the feature map is a pre-Hilbert
subspace of the dual F∗ of F under the inner product

(λ, µ)F∗ := E(λ(f) · µ(f)) =
∫
F
λ(f)µ(f) dρ(f),
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we are back to (2.2) in the form

cov(x, y) = (Φ(x),Φ(y))H for all x, y ∈ Ω (4.4)

once we take H as the Hilbert space completion.
If we have training data pairs (xi, yi), i = 1, . . . , N as before, the yi

are simultaneous evaluations yi = f(xi) of a random function f ∈ F . A
Bayesian recovery problem without noise would take the expected f ∈ F
under the known information yi = f(xi) for i = 1, . . . , N . Another approach
is to find functions uj on Ω such that the expectation

E

((
f(x) −

N∑
j=1

uj(x)f(xj)

)2)
is minimized. Again, these two recovery problems coincide and are compu-
tationally equivalent to those treated in Section 2 in the deterministic case,
once the covariance kernel is specified.

The two different definitions for a covariance kernel cannot lead to se-
rious confusion, because they are very closely related. If we start with
random functions and (4.2), there are pointwise random variables Z(x) :=
{f(x)}f∈F leading to the same covariance kernel via (4.1). Conversely, start-
ing from random variables Z(x) and (4.1) such that the covariance kernel
is positive definite, a suitable function class F can be defined via the span
of all cov(·, y), and point evaluations on this function class carry an inner
product which allows us to define a Hilbert space H such that (4.3) and
(4.4) hold.

From here on, statistical learning theory (Schölkopf and Smola 2002,
Shawe-Taylor and Cristianini 2004) takes over, and we refer to the two
cited books.

4.4. Density estimation by kernels

This is again a different story, because the standard approach does not solve
a linear system. The problem is to recover the density f of a multivariate
distribution over a domain Ω from a large sample x1, . . . , xN ∈ Ω including
repetitions. The true density function must take large values in regions
where the density of sampling points is high. A primitive density estimate
is possible via counting the samples in each cell of a grid, and to plot the
resulting histogram. This yields a piecewise constant density estimate, but
we can do better by using a nonnegative symmetric translation-invariant
kernel K with total integral one, and defining

f̃(x) := 1
N

N∑
j=1

K
(

x−xi
h

)
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as a smooth estimator. If the bandwidth h is taken too small, the result just
shows sharp peaks at the xi. If h is too large, the result is smoothed too
much to be useful. We have another instance of the scaling problem here.
Statisticians have quite some literature on picking the ‘right’ bandwidth and
kernel experimentally, using as much observational or a priori information
as possible, but we cannot deal with these here.

5. Kernel construction

Before we delve into applications, we have to prepare by taking a closer
and more application-oriented view at kernels. We want to give a short
but comprehensive account of kernel construction techniques, making the
reader able to assess features of given kernels or to construct new ones with
prescribed properties.

If the domain Ω has no structure at all, we already know that the most
important strategy to get a useful kernel is to construct a feature map
Φ : Ω → F with values in some Hilbert space F first, and then to use (2.2)
for definition of a kernel. The resulting kernel is always positive semidefi-
nite, but it will be hard to check for positive definiteness a priori , because
this amounts to proving that, for arbitrary different xj ∈ Ω, the feature
vectors Φ(xj) ∈ F are linearly independent. However, linearly dependent
Φ(xj) lead to linearly dependent functions K(·, xj), and these are useless in
the representation (3.4) and can be blended out by pivoting or a suitable
optimization.

Guideline 5.1. If pivoting, adaptivity, or optimization is used according
to Guidelines 3.17 and 3.18, one can safely work with positive semidefinite
kernels in practice.

5.1. Mercer kernels

A very common special case of a feature map occurs if there is a finite or
countable set {ϕi}i∈I of functions on Ω. In applications, this arises if ϕi(x)
is the value of feature number i on an element x ∈ Ω. The feature map Φ
then takes an element x into the set Φ(x) := {ϕi(x)}i∈I ∈ R

|I|. For a set
{wi}i∈I of positive weights one can define a weighted 
2 space by


2,w(I) :=

{
{ci}i∈I :

∑
i∈I

wic
2
i <∞

}
and then assume that these weights and the functions ϕi satisfy∑

i∈I

wiϕ
2
i (x) <∞
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on all of Ω. This means that the scaling of the functions ϕi together with the
weights wi must be properly chosen such that the above series converges.
Then we define F := 
2,w(I) and (2.2) yields the kernel

K(x, y) :=
∑
i∈I

wiϕi(x)ϕi(y) for all x, y ∈ Ω (5.1)

dating back to early work of Hilbert and Schmidt. Such kernels are called
Mercer kernels in the context of learning algorithms because of their connec-
tion to the Mercer theorem on positive integral operators. But note that the
latter theory is much more restrictive, decomposing a given positive integral
operator with kernel K into orthogonal eigenfunctions ϕi corresponding to
eigenvalues wi. For our purposes, such assumptions are not necessary.

Even outside machine learning, many useful recovery algorithms use ker-
nels of the above form. For instance, on spheres one can take spherical
harmonics, and on tori one can take sin and cos functions as the ϕi. This
is the standard way of handling kernels in these situations, and there is a
huge literature on such methods, including applications to geophysics. We
describe the case of the sphere in Section 9 and provide references there.

The reader may figure out that finite partial sums of (5.1) are well-known
ingredients of calculus. For instance, classical Fourier analysis on [0, 2π) or
the unit circle in the complex plane using standard trigonometric functions
and fixed weights leads to the well-known Dirichlet kernel this way. If
the functions ϕi are orthogonal univariate polynomials, the corresponding
kernel is provided by the Christoffel–Darboux formula.

Guideline 5.2. If expansion-type kernels (5.1) are used, kernel meth-
ods provide natural multivariate extensions not only of splines (see Guide-
line 3.7), but also of classical univariate techniques based on orthogonality.

A highly interesting new class of kernels arises when the functions ϕi

are scaled shifts of compactly supported refinable functions in the sense of
wavelet theory. The resulting multiscale kernels (Opfer 2006) have a built-
in multiresolution structure relating them to wavelets and frames. Imple-
menting these new kernels into known kernel techniques yields interesting
multiscale algorithms which are currently investigated.

5.2. Convolution kernels

Of course, one can generalize (5.1) to a convolution-type formula, i.e.,

K(x, y) :=
∫

T
ϕ(x, t)ϕ(y, t)w(t) dt for all x, y ∈ Ω (5.2)

under certain integrability conditions and with a positive weight function
w on an integration domain T . This always yields a positive semidefinite
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kernel, and positive definiteness follows if functions ϕ(x, ·) are linearly in-
dependent on T for different x ∈ Ω (Levesley, Xu, Light and Cheney 1996).
Together with (5.1), this technique is able to generate compactly supported
kernels, but there are no useful special cases known which were constructed
along these lines.

Guideline 5.3. Kernels obtained by weighted positive summation or by
convolution of products of other functions are positive semidefinite.

5.3. Kernels and harmonic analysis

However, the most important case arises when the underlying set Ω has
more structure, in particular if it is a locally compact abelian group and
allows transforms of some sort.

Guideline 5.4. Invariant kernels with positive transforms are positive
semidefinite.

We do not want to underpin this in full generality, e.g., for Riemannian
manifolds (Dyn, Narcowich and Ward 1999) or for topological groups (Gutz-
mer 1996, Levesley and Kushpel 1999). Instead, we focus on translation-
invariant kernels on R

d and use Fourier transforms there, where the above
result is well known and easy to prove. In fact, positivity of the Fourier
transform almost everywhere is sufficient for positive definiteness of a ker-
nel. This argument proves positive definiteness of the Gaussian and the
Sobolev kernel in (2.8), because their Fourier transforms are well known
(another Gaussian and the function (1+‖ ·‖2

2)
−k, respectively, up to certain

constants). By inverse argumentation, the inverse multiquadric kernels of
the form

K(‖x− y‖2) := (1 + ‖x− y‖2
2)

−k, x, y ∈ R
d, k > d/2 (5.3)

are also positive definite.

5.4. Compactly supported kernels

But note that all of these kernels have infinite support, and the kernel
matrices arising in (3.5) will not be sparse. To generate sparse kernel ma-
trices, we need explicitly known compactly supported kernels with positive
Fourier transforms. This was quite a challenge for some years, but now
there are classes of such kernels explicitly available via efficient represen-
tations (Wu 1995, Wendland 1995, Buhmann 1998). If they are dilated to
have support on the unit ball, they have the simple radial form

K(x, y) = φ(‖x− y‖2) =

{
p(‖x− y‖2), if ‖x− y‖2 ≤ 1,
0, else,

(5.4)
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Table 5.1. Wendland’s functions φd,k.

Space dimension Function Smoothness

φ1,0(r) = (1 − r)+ C0

d = 1 φ1,1(r) =̇ (1 − r)3+(3r + 1) C2

φ1,2(r) =̇ (1 − r)5+(8r2 + 5r + 1) C4

φ3,0(r) = (1 − r)2+ C0

φ3,1(r) =̇ (1 − r)4+(4r + 1) C2

d ≤ 3
φ3,2(r) =̇ (1 − r)6+(35r2 + 18r + 3) C4

φ3,3(r) =̇ (1 − r)8+(32r3 + 25r2 + 8r + 1) C6

φ5,0(r) = (1 − r)3+ C0

d ≤ 5 φ5,1(r) =̇ (1 − r)5+(5r + 1) C2

φ5,2(r) =̇ (1 − r)7+(16r2 + 7r + 1) C4

where p is a univariate polynomial in the case of Wu’s and Wendland’s
functions. For Buhmann’s functions, p contains an additional log-factor.
In particular, Wendland’s functions are well studied for various reasons.
First of all, given a space dimension d and degree of smoothness 2k, the
polynomial p = φd,k in (5.4) has minimal degree among all positive definite
functions of the form (5.4). Furthermore, their ‘native’ reproducing ker-
nel Hilbert spaces are norm-equivalent to Sobolev spaces Hτ (Rd) of order
τ = d/2 + k + 1/2. Finally, the simple structure allows a fast evaluation.
Examples of these functions are given in Table 5.1.

5.5. Further cases

There are a few other construction techniques that allow us to generate new
kernels out of known ones.

Theorem 5.5. Kernels obtained by weighted positive summation of pos-
itive (semi-) definite kernels on the same domain Ω are positive (semi-)
definite.

For handling data involving differential operators, we need the following.

Guideline 5.6. If a nontrivial linear operator L is applied to both argu-
ments of a positive semidefinite kernel, then it will in most cases be possible
to construct another positive semidefinite kernel.
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This can be carried out in detail by using the representations (5.1) or
(5.2), if they are available. In general, one can work with (2.5) and assume
that L can be applied inside the inner product.

There is a final construction technique we only mention here briefly. It
is covered well in the literature, dating back to Hausdorff, Bernstein and
Widder, and it was connected to completely monotone univariate functions
by Schoenberg and Micchelli (Micchelli 1986). It is of minor importance for
constructing application-oriented kernels, because it is restricted to radial
kernels which are positive definite on R

d for all dimensions, and it cannot
generate kernels with compact support. However, it provides useful theo-
retical tools for analysing the kernels which follow next.

6. Special kernels

So far, we have already presented the Gaussian kernel (2.1), the inverse
multiquadric (5.3), and the Sobolev kernel (2.8). These have in common
that they are radial basis functions which are globally positive and have
positive Fourier transforms. Another important class of radial kernels is
compactly supported and of local polynomial form, i.e., the Wendland func-
tions (5.4). But this is not the end of all possibilities.

6.1. Kernels as fundamental solutions

Guideline 6.1. There are other and somewhat more special kernels which
are related to important partial differential equations.

The most prominent case is the thin-plate spline (Duchon 1976, 1979)

K(x, y) = ‖x− y‖2
2 log ‖x− y‖2 for all x, y ∈ R

d, (6.1)

which models a thin elastic sheet suspended at y as a function of x and solves
the biharmonic equation ∆2u = 0 in two dimensions, everywhere except at
y. More generally, there are polyharmonic splines defined as fundamental
solutions of iterated Laplacians. They deserve a closer look, because they
have special scaling properties, are of central importance for the meshless
method of fundamental solutions in Section 13, and lead naturally to the
notion of conditionally positive definite functions below.

The fundamental solution for a differential operator L at some point
x ∈ R

d is defined as a kernel K(x, ·) which satisfies LK(x, ·) = δx in the
distributional sense. For the iterated Laplacian Lm := (−∆)m we get radial
kernels

r2m−d for d odd,

r2m−d log r for d even,

as functions of r = ‖x− y‖2 up to multiplicative constants and for 2m > d.
This contains the thin-plate splines of (6.1) for m = d = 2 and generalizes
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to positive real exponents as

rβ for β /∈ 2Z,

rβ log r for β ∈ 2Z,
(6.2)

where now the space dimension no longer appears.
Unfortunately, these functions increase with r, and so they are neither

bell-shaped nor globally integrable. Their Fourier transforms cannot be
calculated in the classical sense, and thus there are no standard Fourier
transform techniques to prove positive definiteness. The same holds for
multiquadrics

(1 + r2)β/2 for β /∈ 2Z, β > 0,

which can be seen as a regularization of the polyharmonic spline rβ at zero,
and which extends the inverse multiquadrics of (5.3) to positive exponents,
the most widely used case being β = 1. Fortunately, these functions can be
included within kernel theory by a simple generalization.

6.2. Conditionally positive definite kernels

Definition 6.2. A symmetric kernel K : Ω × Ω → R is conditionally
positive (semi-) definite of order m on Ω ⊆ R

d, if for all finite subsets
X := {x1, . . . , xN} of distinct points in Ω the symmetric matrices AK,X

with entries K(xj , xk), 1 ≤ j, k ≤ N define a positive (semi-) definite
quadratic form on the subspace

Vm,X :=

{
α ∈ R

N :
N∑

j=1

αjp(xj) = 0 for all p ∈ πm−1(Rd)

}
(6.3)

of coefficient vectors satisfying certain ‘discrete vanishing moment’ condi-
tions with respect to the space πm−1(Rd) of d-variate real polynomials of
degree smaller than m.

Note that (unconditional) positive definiteness is identical to conditional
positive definiteness of order zero, and that conditional positive definite-
ness of order m implies conditional positive definiteness of any larger order.
Table 6.1 lists the appropriate orders of positive definiteness for special ra-
dial kernels.

Recovery problems using conditionally positive definite kernels of positive
order m have to modify the trial space K0 to

Km := πm−1(Rd) + Pm,

Pm := span

{
N∑

j=1

αjK(·, xj), α ∈ Vm,X , X = {x1, . . . , xN} ⊂ Ω

}
. (6.4)
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The norm (2.6) now works only on the space Pm, and thus only closPm

turns into a Hilbert space. The native space K for K is then

K := πm−1(Rd) + closPm,

but the reproduction (2.9) of functions via the kernelK needs a modification
which we shall omit here.

If we have training data (xk, yk), 1 ≤ k ≤ N for a model f(xk) = yk, we
now plug these equations into our new trial space, using a basis p1, . . . , pQ

of πm−1(Rd) and get a linear system

N∑
j=1

αjK(xk, xj) +
Q∑

i=1

βip(xk) = yk, 1 ≤ k ≤ N,

N∑
j=1

αjp�(xj) + 0 = 0, 1 ≤ 
 ≤ Q.

This system has N +Q equations and unknowns, and it is uniquely solvable
if there is no nonzero polynomial vanishing on the set X = {x1, . . . , xN}.
Since the order m of conditional positive definiteness is usually rather small
(m = 1 for standard multiquadrics and K(x, y) = ‖x− y‖2, while m = 2 for
thin-plate splines) this modification is not serious, and it can be made obso-
lete if the kernel is changed slightly (Light and Wayne 1998, Schaback 1999).
However, many engineering applications use multiquadrics or thin-plate
splines without adding constant or linear polynomials, and without caring
for the moment conditions in (6.3). This often causes no visible problems,
but violates restrictions imposed by conditional positive definiteness.

Note that trial spaces for polyharmonic functions are independent of scal-
ing, if they are properly defined via (6.4). This eliminates many of the
scaling problems arising in applications, but it comes at the price of limited
smoothness of the kernels, thus reducing the attainable reproduction errors
according to Guideline 3.13.

Table 6.1. Orders of conditional positive definiteness.

Kernel Φ(r), r = ‖x− y‖2 Order m Conditions

(−1)�β/2�(c2 + r2)β/2 
β/2� β > 0, β /∈ 2N

(−1)�β/2�rβ 
β/2� β > 0, β /∈ 2N

(−1)k+1r2k log r k + 1 k ∈ N
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6.3. Singular kernels

The condition 2m > d for the polyharmonic functions forbids useful cases
like m = 1 in dimensions d ≥ 2, and thus it excludes the fundamental solu-
tions log r and r−1 of the Laplacian in dimensions 2 and 3. These kernels
are radial, but they have singularities at zero. They still are useful repro-
ducing kernels in Sobolev spaces W 1

2 (Rd) for d = 2, 3, but the reproduction
property now reads

λ(f) = (λxK(· − x), f)W 1
2 (Rd) (6.5)

for all f ∈ W 1
2 (Rd), λ ∈ (W 1

2 (Rd)
)∗ = W−1

2 (Rd). These kernels and their
derivatives arise in integral equations as single or double layer potentials,
and we shall encounter them again in Section 13 where they are used for
the meshless method of fundamental solutions.

7. Approximation by kernels

This section serves to support Guideline 3.9 concerning the surprising qual-
ity of kernel-based approximations. We shall do this in a strictly determin-
istic setting, ignoring, for instance, the interesting results from statistical
learning theory.

7.1. Convolution approximation

One of the oldest forms of kernel approximation is used for series expansions
and mollifiers, and it takes the form of convolution. It is also at the core of
smoothed particle hydrodynamics, a class of practically very useful meshless
kernel-based methods we briefly describe in Section 12. Here, we use it as
an introduction to the behaviour of kernel approximations in general.

Global convolution of a given function f with a kernel K is

K ∗ f :=
∫

Rd

f(x)K(· − x) dx,

where we have restricted ourselves to translation-invariant kernels on R
d.

Approximation of a function f by kernel convolution means

f ≈ K ∗ f (7.1)

in some norm. Clearly, equality in (7.1) holds only if the kernel acts like
a delta functional. Thus convolutions with kernels should achieve good
reproduction if the kernels are approximations to the delta functional. This
indicates that scaling is a crucial issue here again. If K is smoother than
f , convolution allows us to construct smooth approximations to nonsmooth
functions.
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To deal with scaling properly, we observe Guideline 3.15 and introduce a
positive scaling parameter δ to scale a fixed kernel K in L1(Rd) by

Kδ(·) := δ−dK(·/δ)
to make the integral of Kδ on R

d independent of δ. Furthermore, the kernel
convolution should approximate monomials pα(x) := xα of order at most k
well in a pointwise sense, i.e., for all |α| < k, δ > 0 we require

|Kδ ∗ pα − pα|(x) ≤ δkA(x) for all x ∈ R
d (7.2)

with a fixed function A on R
d. For some positive integer k we finally assume

that the kernel satisfies a decay condition

pα ·K ∈ L1(Rd) for all |α| < k. (7.3)

Theorem 7.1.(Cheney, Light and Xu 1992, Cheney and Light 2000)
Under these assumptions, there is a constant c such that

‖Kδ ∗ f − f‖L∞(Rd) ≤ cδk max
|α|≤k

‖fα‖L∞(Rd) (7.4)

holds for all functions f ∈ Ck(Rd).

Note that the convergence depends on the scale parameter δ going to zero,
while the rate is dependent on the decay of K. Surprisingly, the reproduc-
tion condition (7.2) can always be achieved exactly (Cheney and Light 2000)
by a suitable linear combination of scaled instances of the original kernel,
provided that it satisfies the decay condition (7.3) and has integral one.
However, this modification of the kernel will in general spoil positive def-
initeness. Similar kernel modifications arise in many application-oriented
papers on meshless kernel methods.

7.2. Discretized convolution approximation

Discretization of the convolution integral leads to

(Kδ ∗ f)(x) ≈
∑
i∈Iδ

f(xi,δ)Kδ(x− xi,δ)wi,δ for all x ∈ R
d

with integration weights wi,δ at integration nodes xi,δ. This is a straight-
forward way to approximate f by a trial function of the form (3.4).

The error bound (7.4) now gets an additional term for the integration
error. Near each x ∈ R

d there must be enough integration points to resolve
the kernel at scale δ, and therefore the integration points must be closer
than O(δ). This approach will be called stationary below, and it needs
more and more integration points for kernels of decreasing width.

But for reaching a prescribed accuracy, we can first choose a kernel scale
δ such that (7.4) is sufficiently small. For this fixed δ we then perform a
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sufficiently good numerical integration to reproduce f sufficiently well by a
finite linear combination of kernel translates. At this point, the smoothness
of f and K determines the required density of integration points. This will
be called a nonstationary setting below. This discussion will be resumed
later, and it is crucial for the understanding of kernel approximations.

The discretized convolution approach leads to quasi-interpolants (Rabut
1989, Beatson and Light 1993, Buhmann et al. 1995, Maz’ya and Schmidt
2001, Ling 2005) of f which can be directly calculated from function values,
without any linear system to solve. However, as is well known from the
classical Bernstein or Schoenberg operators, there are better approximations
using the same trial space. These will be dealt with later, but we note that
quasi-interpolation works in quite a general fashion and is worth further
investigation.

The theoretical consequence is that approximations from spaces spanned
by translates of kernels result from an interaction between the scale of the
kernel and the density of the translation points. This is a crucial issue
for all kernel-based techniques, and it has consequences not only for the
approximation, but also for its stability.

7.3. Fill distance and separation radius

In studying the approximation and stability properties of meshless meth-
ods, the following two geometric quantities are usually employed. Sup-
pose we are confronted with a bounded set Ω ⊆ R

d and a finite subset
X = {x1, . . . , xN} ⊆ Ω used for defining a trial space

KX := span{K(·, xj) : xj ∈ X} ⊂ K0 ⊂ K (7.5)

in the terminology of Section 2. The approximation power of KX is mea-
sured in terms of the fill distance of X in Ω, which is given by the radius of
the largest data-site free ball in Ω, i.e.,

hX := hX,Ω := sup
x∈Ω

min
1≤j≤N

‖x− xj‖2. (7.6)

The second geometric quantity is the separation radius of X, which is half
the distance between the two closest data sites, i.e.,

qX := 1
2 min

j �=k
‖xj − xk‖2, (7.7)

and does not depend on the domain. Obviously, the separation radius plays
an important role in the stability analysis of the interpolation process, since
a small qX means that at least two points, and hence two rows in the system
(3.5) are nearly the same. If the data in these two points are roughly the
same or only differ by noise, it is reasonable to discard one of them. This
is an instance of Guideline 3.17 and will be used by thinning algorithms
within multiscale methods, as described in Section 10.
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Finally, we will call a sequence of data sets X = Xh quasi-uniform if there
is a constant cq > 0 independent of X such that

qX ≤ hX,Ω ≤ cqqX . (7.8)

The mesh ratio ρ = ρX,Ω := hX,Ω/qX ≥ 1 provides a measure of how
uniformly points in X are distributed in Ω. Remember that special results
on convergence of univariate polynomial splines are valid only for cases with
bounded mesh ratio; similar restrictions should be expected here as well.

7.4. Nonstationary versus stationary scales

There are two fundamentally different ways in which scales of kernel-based
trial spaces are used in theory and practice. This often leads to misunder-
standings of certain results, and therefore we have to be very explicit at this
point.

In classical finite element and spline theory, the support of the nodal basis
functions scales with the size of the mesh. For example, using classical hat
functions to express a piecewise linear spline function over the node set hZ

leads to a representation of the form

sh(x) =
∑
j∈Z

αjB1

(x−jh
h

)
=
∑
j∈Z

αjB1

(
x
h − j

)
, (7.9)

where B1 is the standard hat function, which is zero outside [0, 2] and is
defined to be B1(x) = x for 0 ≤ x ≤ 1 and B1(x) = 2 − x for 1 ≤ x ≤ 2.

From (7.9) it follows that each of the basis functions B1( ·
h−j) has support

[jh, (j+2)h], i.e., the support scales with the grid width. As a consequence,
when setting up an interpolation system, each row in the interpolation ma-
trix has the same number of nonzero entries (here actually only one); and
this is independent of the current grid width. Hence, such a situation is
usually referred to as a stationary scheme. Thus, for a stationary setting,
the basis function scales linearly with the grid width.

In contrast to this, a nonstationary scheme keeps the basis function fixed
for all fill distances h, i.e., the approximant now takes the form

sh(x) =
∑
j∈Z

αjB1(x− jh), (7.10)

resulting in a denser and denser interpolation matrix if h tends to zero.
Note that for univariate polynomial spline spaces these two settings gen-

erate the same trial space. But this is not true for general kernels. In
any case of kernel usage, one should follow Guideline 3.15 and introduce
a scaling parameter δ to form a scaled trial space Kδ,X as in (7.5). Then
a stationary setting scales δ proportional to the fill distance hX,Ω of (7.6),
while the nonstationary setting uses a fixed δ and varies hX,Ω only.
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7.5. Stationary scales

A stationary setting arises with a discretization of the convolution approxi-
mation (7.1) if using integration points whose fill distance h is proportional
to the kernel width δ. It is also the standard choice for finite element meth-
ods, including their generalized version (Babuška et al. 2003) and large
classes of meshless methods with nodal bases (see Section 12).

The standard analysis tools for stationary situations are Strang–Fix con-
ditions for the case of gridded data, while for general cases the Bramble–
Hilbert lemma is applied, relying on reproduction of polynomials. These
tools do not work in the nonstationary setting.

Stationary settings based on (fixed, but shifted and scaled) nodal func-
tions with compact support will generate matrices with a sparsity which
is independent of the scaling or fill distance. For finite element cases, the
condition of the matrices grows like some negative power of h, but can be
kept constant under certain conditions by modern preconditioning methods.
But this does not work in general.

Guideline 7.2. For kernel methods, stationary settings have to be used
with caution.

Without modification, the interpolants from Section 3 using stationary
kernel-based trial spaces on regular data will not converge for h → 0 for
absolutely integrable kernels (Buhmann 1988, 1990), including the Gaus-
sian and Wendland’s compactly supported functions. But if kernels have
no compact support, stationary kernel matrices will not be sparse, giving
away one of the major advantages of stationary settings. There are certain
methods to overcome this problem, and we shall deal with them in Section 8.

However, the practical situation is not as bad. Nobody can work for
extremely small h anyway, such that convergence for h→ 0 is a purely the-
oretical issue. We summarize the experimental behaviour (Schaback 1997)
as follows.

Guideline 7.3. The error of stationary interpolation by kernel methods
decreases with h → 0 to some small positive threshold value. This value
can be made smaller by increasing the starting scale of the kernel, i.e., by
using a larger sparsity.

This effect is called approximate approximation (Maz’ya 1994, Lanzara,
Maz’ya and Schmidt 2005) and deserves further study, including useful
bounds of the threshold value. It is remarkable that it occurred first in
the context of parabolic equations.

Practical work with kernels should follow Guideline 3.15 and adjust the
kernel scale experimentally. Once it is fixed, the nonstationary setting ap-
plies, and this is how we argued in the case of discretized convolution above,
if a prescribed accuracy is required. We summarize as follows.
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Guideline 7.4. In meshless methods using positive definite kernels, ap-
proximation orders refer in general to a nonstationary setting. However,
nonstationary schemes lead to ill-conditioned interpolation matrices. On
the other hand, a fully stationary scheme generally provides no convergence
but interpolation matrices with a condition number being independent of
the fill distance.

Guideline 7.4 describes another general trade-off or uncertainty principle
in meshless methods; see also Guideline 3.13. As a consequence, when
working in practice with scaled versions of a single translation-invariant
kernel, the scale factor needs special care. This brings us back to what we
said about scaling in Sections 2 and 3, in particular Guideline 2.5.

However, from now on we shall focus on the nonstationary case.

7.6. Nonstationary interpolation

While in classical spline theory nonstationary approximants of the form
(7.10) play no role at all, they are crucial in meshless methods for approxi-
mating and interpolating with positive definite kernels. Thus we now study
approximation properties of interpolants of the form (3.4) with a fixed kernel
but for various data sets X. To make the dependence on X and f ∈ C(Ω)
explicit, we will use the notation

sf,X =
N∑

j=1

αjK(·, xj),

where the coefficient vector is determined by the interpolation conditions
sf,X(xj) = f(xj), 1 ≤ j ≤ N and the linear system (3.5) involving the
kernel matrix AK,X .

Early convergence results and error bounds were restricted to target func-
tions f ∈ K from the native function space K of (2.7) associated to the em-
ployed kernel (Madych and Nelson 1988, 1990, 1992, Wu and Schaback 1993,
Light and Wayne 1998). They are local pointwise estimates of the form

|f(x) − sf,X(x)| ≤ CF (h)‖f‖K, (7.11)

where F is a function depending on the kernel. For kernels of limited
smoothness it is of the form F (h) = hβ/2, where β relates to the smoothness
of K in the sense of Table 6.1. For infinitely smooth kernels such as Gaus-
sians or (inverse) multiquadrics it has the form F (h) = exp(−c/h). A more
detailed listing of kernels and their associated functions F can be found in
the literature (Schaback 1995b, Wendland 2005b).

Guideline 7.5. If the kernelK and the interpolated function f are smooth
enough, the obtainable approximation rate for nonstationary interpolation
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increases with the smoothness, and can be exponential in the case of analytic
kernels and functions.

This supports Guideline 3.9 and is in sharpest-possible contrast to the sta-
tionary situation and finite element methods. It can also be observed when
nonstationary trial spaces are used for solving partial differential equations.

Guideline 7.6. If the kernel K and the interpolated function f have dif-
ferent smoothness, the obtainable approximation rate for nonstationary in-
terpolation depends on the smaller smoothness of the two.

Recent research has concentrated on the escape scenario, in which the
smoothness of the kernelK exceeds the smoothness of f , i.e., error estimates
have to be established for target functions from outside the native Hilbert
space. This is a realistic situation in applications, where a fixed kernel has
to be chosen without knowledge of the smoothness of f . Surprisingly, these
investigations have led far beyond kernel-based trial spaces.

To make this more precise, let us state two recent results (Narcowich,
Ward and Wendland 2005b, 2004). As usual we let W k

p (Ω) denote the
Sobolev space of measurable functions having weak derivatives up to order
k in Lp(Ω). Furthermore, we will employ fractional order Sobolev spaces
W τ

p (Ω), which can, for example, be introduced using interpolation theory.

Theorem 7.7. Let k be a positive integer,

0 ≤ s < 1, τ = k + s, 1 ≤ p <∞, 1 ≤ q ≤ ∞,

and let m ∈ N0 satisfy k > m+ d/p or, for p = 1, k ≥ m+ d. Let X ⊂ Ω be
a discrete set with mesh norm hX,Ω where Ω is a compact set with Lipschitz
boundary which satisfies an interior cone condition. If u ∈ W τ

p (Ω) satisfies
u|X = 0, then

|u|W m
q (Ω) ≤ Ch

τ−m−d(1/p−1/q)+
X,Ω |u|W τ

p (Ω),

where C is a constant independent of u and hX,Ω, and (x)+ = max{x, 0}.
Theorem 7.7 bounds lower Sobolev seminorms of functions in terms of

a higher Sobolev seminorm, provided the functions have lots of zeros. It
is entirely independent of any reconstruction method or trial space, and
it can be successfully applied to any interpolation method that keeps a
discretization-independent upper bound on a high Sobolev seminorm.

In fact, if sf,X ∈ W τ
p (Ω) is an arbitrary function which interpolates f ∈

W τ
p (Ω) exactly in X, we have

|f − sf,X |W m
q (Ω) ≤ Ch

τ−m−d(1/p−1/q)+
X,Ω (|f |W τ

p (Ω) + |sf,X |W τ
p (Ω)),

and if the interpolation manages to keep |sf,X |W τ
p (Ω) bounded independent

of X, this is an error bound and an optimal order convergence result. This
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opens a new way to deal with all interpolation methods that are regularized
properly.

For interpolation by kernels we can use Theorem 3.4 to provide the bound
|sf,X |K ≤ |f |K if the kernel’s native Hilbert space K is continuously embed-
ded in Sobolev space W τ

2 (Ω) and contains f . By embedding, we also have
|sf,X |W τ

p (Ω) ≤ C|f |K and Theorem 7.7 yields error estimates of the form

|f − sf,X |W m
2 (Ω) ≤ Chτ−m

X,Ω ‖f‖K,
|f − sf,X |W m∞(Ω) ≤ Ch

τ−m−d/2
X,Ω ‖f‖K.

This still covers only the situation of target functions from the native Hilbert
space, but it illustrates the regularization effect provided by Theorem 3.4
and described in Guideline 3.12.

The next result is concerned with the situation that the kernel’s native
space is norm-equivalent to a smooth Sobolev space W τ

2 (Ω) while the target
function comes from a rougher Sobolev space W β

2 (Ω). It employs the mesh
ratio ρX,Ω = hX,Ω/qX .

Theorem 7.8. If τ ≥ β, β = k + s with 0 < s ≤ 1 and k > d/2, and if
f ∈W β

2 (Ω), then

‖f − sf,X‖W µ
2 (Ω) ≤ Chβ−µ

X,Ω ρ
τ−µ
X,Ω‖f‖W β

2 (Ω)
, 0 ≤ µ ≤ β.

In particular, if X is quasi-uniform, this yields

‖f − sf,X‖W µ
2 (Ω) ≤ Chβ−µ

X,Ω ‖f‖
W β

2 (Ω)
, 0 ≤ µ ≤ β. (7.12)

Note that these error bounds are of optimal order. Furthermore, since
they can be applied locally, they automatically require fewer data or boost
the approximation order at places where the function is smooth.

Guideline 7.9. Nonstationary kernel approximations based on sufficiently
smooth kernels have both h- and p-adaptivity.

7.7. Condition

But this superb approximation behaviour comes at the price of ill-con-
ditioned matrices, if no precautions like preconditioning (Faul and Powell
1999, Ling and Kansa 2004, Brown et al. 2005, Ling and Kansa 2005) are
taken. This is due to the fact that rows and columns of the kernel matrix
AK,X with entries K(xi, xj) relating to two close points xi and xj will be
very similar. Thus the condition will increase when the separation radius
qX of (7.7) decreases, even if the fill distance hX,Ω is kept constant, i.e.,
when adding data points close to existing ones.

A thorough analysis shows that the condition number of the kernel matrix
AK,X = (K(xi, xj)) depends mainly on the smallest eigenvalue of AK,X ,
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while the largest usually does not increase more rapidly than the number
N of data points. For the smallest eigenvalue it is known (Narcowich and
Ward 1991, Ball 1992, Ball, Sivakumar and Ward 1992, Binev and Jetter
1992, Narcowich and Ward 1992, 1994b, Schaback 1995b, Wendland 2005b)
that it can be bounded from below by

λmin(AK,X) ≥ cG(qX).

Unfortunately, in many cases this inequality is sharp and the function G is
related to the function F arising in (7.11) by G(q) = Θ(F (q2)) for q → 0
(Schaback 1995b). This is the theoretical background of Guideline 3.13
relating error and condition.

7.8. Approximation via relaxed interpolation

The above discussion suggests the following heuristic.

Guideline 7.10. The best approximation error with the most stable sys-
tem is achieved by using quasi-uniform data sets.

Sorting out nearly coalescing points by thinning (Floater and Iske 1998)
and going over to suitable subproblems by adaptive methods (Schaback
and Wendland 2000a, Bozzini, Lenarduzzi and Schaback 2002, Hon, Sch-
aback and Zhou 2003, Ling and Schaback 2004, de Marchi, Schaback and
Wendland 2005) are useful to ensure quasi-uniformity. However, these meth-
ods are dangerous in the presence of noise.

One possible remedy to both problems, coalescing points and noisy data,
is to relax the interpolation condition and to solve instead the following
smoothing problem:

min

{
N∑

j=1

[f(xj) − s(xj)]2 + λ‖s‖2
K, : s ∈ K

}
, (7.13)

where λ > 0 is a certain smoothing parameter balancing the resulting
approximant between interpolation and approximation. This problem oc-
curred in a probabilistic setting in Section 4. It is also intensively studied in
the context of kernel learning (Cristianini and Shawe-Taylor 2000, Cucker
and Smale 2001, Schölkopf and Smola 2002, Shawe-Taylor and Cristianini
2004) and in the theory of regularization networks (Evgeniou, Pontil and
Poggio 2000).

A standard result of central importance for all noisy recovery problems
and including learning theory is the following generalization of Theorem 3.4.

Theorem 7.11. Suppose K is the reproducing kernel of the Hilbert space
K. Then the solution to (7.13) is given by a function of the form (3.4),
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where the coefficient vector α = {αj} now can be calculated by solving the
linear system

(AK,X + λI)α = f |X.
Guideline 7.12. Relaxed interpolation along the lines of (7.13) is com-
putationally equivalent to recovery from noisy observations. The relaxation
parameter λ is connected to the noise variance σ by λ = σ2.

Theorem 7.11 shows that the ill-conditioning problem is simply addressed
by moving the eigenvalues of the interpolation matrix away from zero by an
offset given by the smoothing parameter λ > 0.

However, this immediately introduces the problem of how to choose the
smoothing parameter. There have been thorough investigations mainly mo-
tivated by probabilistic approaches along the lines of Section 4 (Reinsch
1967, 1971, Wahba 1975, Craven and Wahba 1979, Ragozin 1983, Cox 1984,
Wahba 1990, Wei, Hon and Wang 2005).

Instead of going into details here, we follow a recent deterministic ap-
proach (Wendland and Rieger 2005) which is based upon the following sim-
ple observation. The solution sλ of (7.13) allows the following bounds:

|f(xj) − sλ(xj)| ≤
√
λ‖f‖K for all 1 ≤ j ≤ N,

‖sλ‖K ≤ ‖f‖K.
Both can easily be verified, since f ∈ K is feasible in (7.13). Hence, if λ is
considered to be small, the error function u = f − sλ is approximately zero
on X and its K-norm can be bounded by twice the K-norm of f .

Theorem 7.13. Assume that all assumptions of Theorem 7.7 hold, except
for u|X = 0. Then the following generalized estimate holds:

|u|W m
q (Ω) ≤ C

(
h

τ−m−d(1/p−1/q)+
X,Ω |u|W τ

p (Ω) + h−m
X,Ω‖u|X‖∞

)
. (7.14)

This is a generalization of a Poincaré–Friedrichs inequality, and it turns
out to be very useful for the analysis of unsymmetric kernel-based meth-
ods for solving partial differential equations (Schaback 2005a). Under the
assumptions of Theorem 7.8 this yields the estimate

‖f − sλ‖L∞(Ω) ≤ C
(
h

τ−d/2
X,Ω +

√
λ
)‖f‖K.

for our smoothing problem. Keeping in mind that in this particular situation
F (h) = hτ−d/2 and G(q) = q2τ−d, we have the following guideline.

Guideline 7.14. If the smoothing parameter λ > 0 is chosen as λ =
Ch2τ−d, the relaxed technique still has an optimal order of approximation,
while the smallest eigenvalue now behaves as in the case of quasi-uniformity.

In contrast to adaptive methods working on smaller subproblems, this
relaxed approximation will still have a full set of coefficients in (3.4). It is
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a challenging open problem to prove deterministic results concerning the
complexity reduction obtainable by a more general relaxation like (3.9).

7.9. Moving least squares

While our analysis in the previous subsections dealt with nonstationary
approximation schemes based on kernel methods, we will now discuss a par-
ticular stationary scheme. Approximation by moving least squares has a
long history (Shepard 1968, McLain 1974, 1976, Lancaster and Salkauskas
1981, Farwig 1986, 1987, 1991). It has become popular again in approxima-
tion theory (Levin 1999, Wendland 2001), in computer graphics (Mederos,
Velho and de Figueiredo 2003, Fleishman, Cohen-Or and Silva 2005), and
in meshless methods for solving partial differential equations (Belytschko
et al. 1996b).

The idea of moving least squares approximation is to solve for every point
x a locally weighted least squares problem, where a kernel is used as a weight
function. This appears to be quite expensive at first sight, but actually it is
a very efficient method, because it can come at constant cost per evaluation,
independent of the number and complexity of the data. Moving least squares
also arise in meshless methods, where they are used for a ‘nodal basis’ to
generate data in nearby locations, e.g., for performing the integrations to
calculate entries of a stiffness matrix. Moreover, in many applications we
are interested in only a few evaluations. For such cases, moving least squares
techniques are even more attractive, because it is not necessary to set up
and solve a large system.

The influence of the data points is governed by a weight function w :
Ω × Ω → R, which becomes smaller the farther its arguments are away
from each other. Ideally, w vanishes for arguments x, y ∈ Ω with ‖x − y‖2

greater than a certain threshold. Such behaviour can be modelled by using
a translation-invariant nonnegative kernel of compact support, with no need
for positive definiteness. As in any other kernel-based method, Guideline 2.5
makes scaling a serious issue, and Guideline 3.15 implies that w should be of
the form w(x, y) = Φδ(x− y) with a controllable scaled version Φδ = Φ(·/δ)
of a compactly supported kernel Φ : R

d → R.

Definition 7.15. For x ∈ Ω the value sf,X(x) of the moving least squares
approximant is given by sf,X(x) = p∗(x) where p∗ is the solution of

min

{
N∑

i=1

(f(xi) − p(xi))2w(x, xi) : p ∈ πm(Rd)

}
. (7.15)

Here, πm(Rd) denotes the space of all d-variate polynomials of degree at
most m. But it is not at all necessary to restrict oneself to polynomials.
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It is, for example, even possible to incorporate singular functions into the
finite-dimensional function space. This is a common trick for applications in
meshless methods dealing with shocks and cracks in mechanics (Belytschko,
Krongauz, Fleming, Organ and Liu 1996a).

The minimization problem (7.15) can be seen as a discretized version of
the continuous problem

min
{∫

Rd

|f(y) − p(y)|2w(x, y) dy : p ∈ πm(Rd)
}
,

where the integral is supposed to be restricted by the support of the weight
function to a region around the point x.

The simplest case of (7.15) is given by choosing only constant polynomials,
i.e., m = 0. In this situation, the solution of (7.15) can easily be computed
to the explicit form

sf,X(x) =
N∑

j=1

f(xj)
w(x,xj)

PN
k=1 w(x,xk)

, (7.16)

which is also called Shepard approximant (Shepard 1968). From the explicit
form (7.16), one can already read off some specific properties, which also
hold more generally for moving least squares. First of all, since the weight
function w(x, y) is supposed to be nonnegative, so are the ‘basis’ functions

uj(x) = w(x,xj)
PN

k=1 w(x,xk)
, 1 ≤ j ≤ N,

which also occur under the name ‘shape functions’ or ‘particle functions’
in meshless methods (see Section 12). Moreover, these functions form a
partition of unity , i.e., they satisfy

N∑
j=1

uj(x) = 1. (7.17)

Note that partitions of unity arise again in Section 8, and they play an
important role in computer-aided design because of their invariance under
affine transformations.

Nonnegativity and partition of unity already guarantee linear conver-
gence, if the weight functions are of the form w(x, y) = Φ((x− y)/h), since
we have for all p ∈ π0(Rd)

|f(x) − sf,X(x)| ≤ |f(x) − p(x)| + |p(x) − sf,X(x)|

≤ |f(x) − p(x)| +
N∑

j=1

uj(x)|p(x) − f(xj)|

≤ 2‖f − p‖L∞(B(x,h))
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and the last term can be bounded by Cfh if p is the local Taylor polynomial
to f of degree zero.

To derive a similar result for the general moving least squares approx-
imation scheme, it is important to rewrite the approximant in form of a
quasi-interpolant

sf,X(x) =
N∑

j=1

um
j (x)f(xj),

as in Theorem 3.6. This is always possible under mild assumptions on the
data sites. Though the basis functions um

j (x) are in general not nonnegative,
they satisfy a constrained minimization problem, which leads to a uniform
bound of the 
1-norm of {um

j (x)}N
j=1. From this, convergence orders can be

derived. The following result (Wendland 2001) summarizes this discussion.

Theorem 7.16. Suppose the data setX ⊆ Ω is quasi-uniform and πm(Rd)-
unisolvent. If the support radius δ of the compactly supported, nonnegative
weight function w(x, y) = Φ((x − y)/δ) is chosen proportional to the fill
distance hX,Ω and if f ∈ Cm+1(Rd) is the target function, then the error
can be bounded by

‖f − sf,X‖L∞(Ω) ≤ Cfh
m+1
X,Ω .

It is remarkable that this result actually is local, i.e., in regions where
the target function is less smooth, the associated approximation order is
automatically achieved. As in Guideline 7.9 we have the following.

Guideline 7.17. Moving least-squares methods have both h- and p-adap-
tivity, if the order m of the local polynomial space is large enough and if
sufficiently many local data points are included.

Moreover, the assumption on the quasi-uniformity of the data set can
be dropped if the support radius is continuously adapted to the local fill
distance.

Finally, if for a point x ∈ Ω the positions of a bounded number of sur-
rounding data sites in the ball of radius δ = ChX,Ω are known, the min-
imization problem can be solved and hence the moving least squares ap-
proximation can be computed in constant time. Locating the relevant data
sites can be done by employing an ‘intelligent’ data structure in at most
O(logN) time, if an additional O(N logN) time is allowed to build the
data structure. This, of course, is only relevant if a substantial number of
evaluations is necessary. For only a few evaluations, all relevant data sites
can be found by brute force methods in linear time.
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8. Large and ill-conditioned kernel systems

Section 7 indicated that approximation by nonstationary scales of kernel-
based trial spaces may lead to large, non-sparse systems which are often
highly ill-conditioned. This will become important for applications in Sec-
tion 10. Hence, it is now time to discuss efficient methods for solving large
and dense systems arising from kernel approximations or interpolations.
Note that these systems are qualitatively different from those arising in fi-
nite element methods (see Guidelines 3.17 and 3.18), and thus they call for
different numerical techniques.

There are five major approaches in this area:

• multipole expansions, often coupled with
• domain decomposition methods,
• partition of unity methods,
• multilevel techniques using compactly supported kernels,
• preconditioning.

Each of these methods has its strengths and drawbacks and it depends on
the users to decide which one suits their application best.

8.1. Multipole expansions

We start with the discussion of multipole expansions. They are, in the first
place, only a tool to approximately evaluate sums of the form

s(x) =
N∑

j=1

αjK(x, xj) (8.1)

from (3.4) in a fast way. As a matter of fact, they have been developed
in the context of the N -body problem, which appears in various scientific
fields (Barnes and Hut 1986, Appel 1985, Greengard and Rokhlin 1987).

Large systems of the form (3.5) cannot be solved by any direct method.
Instead, iterative methods have to be employed. No matter which iterative
method is used, the main operation is a matrix by vector multiplication,
which is nothing but the evaluation of N sums of the form (8.1).

Hence, not only for a fast evaluation of the interpolant or approximant
but also for solving the linear equations (3.5) it is crucial to know how to
calculate the above sums efficiently.

To derive a sufficiently fast evaluation of (8.1), for every evaluation point
x the sum is split into the form

s(x) =
∑
j∈I1

αjK(x, xj) +
∑
j∈I2

αjK(x, xj), (8.2)

where I1 contains the indices of those points xj that are close to x, while
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I2 contains the indices of those points xj that are far away from x. Both
sums can now be replaced by approximations to them. In the first case,
since ‖x−xj‖2 is small for xj ∈ I1, the associated sum can, for example, be
approximated by a Taylor polynomial. This is sometimes called a near-field
expansion. More important is a proper approximation to the second sum,
which is done by a unipole or far-field expansion.

The main idea of such an expansion is based upon a kernel expansion of
the form (5.1). Incorporating the weights wi into the function ϕi and also
allowing different functions for the two arguments, this can more generally
be written as

K(x, t) =
∞∑
i=1

ϕi(x)ψi(t), (8.3)

and we usually refer to t in Φ(x, t) as a source point , while x is called an
evaluation point.

Now suppose that the source points xj , j ∈ I2, are located in a local panel
with centre t0, which is sufficiently far away from the evaluation point, i.e.,
panel and evaluation points are well separated. Suppose further, (8.3) can
be split into

K(x, t) =
p∑

k=1

φk(x)ψk(t) +Rp(x, t) (8.4)

with a remainder Rp that tends to zero for ‖x− t0‖2 → ∞ or for p→ ∞ if
‖x− t0‖2 is sufficiently large. Then, (8.4) allows us to evaluate the second
sum s2 in (8.2) by

s2(x) :=
∑
j∈I2

αjK(x, xj)

=
∑
j∈I2

αj

p∑
k=1

φk(x)ψk(xj) +
∑
j∈I2

αjR(x, xj)

=
p∑

k=1

φk(x)
∑
j∈I2

αjψk(xj) +
∑
j∈I2

αjR(x, xj)

=:
p∑

k=1

βkφk(x) +
∑
j∈I2

αjR(x, xj).

Hence, if we use the approximation s̃2(x) =
∑p

k=1 βkφk(x) we have an error
bound

|s2(x) − s̃2(x)| ≤ ‖α‖1 max
j∈I2

|R(x, xj)|,

which is small if x is sufficiently far away from the sources xj , j ∈ I2.
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Moreover, each coefficient βk can be computed in advance in linear time.
Thus, if p is much smaller than N , we can consider it as constant and we
need only constant time for each evaluation of s̃2.

So far, we have developed an efficient method for evaluating a sum of the
form (8.1) for one evaluation point or, more generally, for evaluation points
from the same panel, which is well separated from the panel containing the
source points. To derive a fast summation formula for arbitrary evaluation
points x ∈ Ω, the idea has to be refined. To this end, the underlying region
of interest Ω is subdivided into cells or panels. To each panel a far field and
a near field expansion is assigned. For evaluation, all panels are visited and,
depending on whether or not the panel is well separated from the panel
which contains the evaluation point, the near field or far field expansion
is used.

The decomposition of Ω into panels can be done either uniformly or adap-
tively, dependent on the data. A uniform decomposition makes a near field
expansion indispensable since the cardinality of I1 cannot be controlled.
However, its simple structure makes it easy to implement and hence it has
been and is still often used. An adaptive decomposition is usually based
on a tree-like data structure where the panels are derived by recursive sub-
division of space. More details can be found in the literature (Greengard
and Strain 1991, Beatson and Newsam 1992, Beatson, Goodsell and Powell
1996, Beatson and Greengard 1997, Beatson and Light 1997, Beatson and
Newsam 1998, Roussos 1999, Beatson and Chacko 2000, Beatson, Cherrie
and Ragozin 2000a, 2001).

In any case, since we now have to implement a unipole expansion for
every panel, the resulting technique is called multipole expansion.

Unfortunately, the multipole expansion has to be precomputed for each
kernel separately. However, for translation-invariant kernels K(x, y) =
K(x − y), it suffices to know the far field expansion around zero. Because
this gives the far field expansion around any t0 simply by

K(x− t) = K((x− t0) − (t− t0))

=
p∑

k=1

φk(x− t0)ψk(t− t0) +R(x− t0, t− t0).

The far field expansion around zero can often be calculated using Laurent
expansions of the translation-invariant kernel. Details can be found in the
literature cited above.

8.2. Domain decomposition

Having a fast evaluation procedure for functions of the form (8.1) at hand,
different iterative methods for solving the linear system (3.5) can be applied.
However, the reader should be aware of the fact that the far field expansion
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may now lead to a nonsymmetric situation (Beatson, Cherrie and Mouat
1999).

Here, we want to describe a domain decomposition method (Beatson,
Light and Billings 2000b), which can be extended to generalized interpo-
lation problems (Wendland 2004). Domain decomposition is a standard
technique in finite elements, involving interface conditions and related to
Schwarz iteration. In kernel techniques, it is much simpler, has a funda-
mentally different flavour and already quite some history in the context of
meshless methods for partial differential equations (Dubal 1994, Hon and
Wu 2000a, Zhou, Hon and Li 2003, Ingber, Chen and Tanski 2004, Li and
Hon 2004, Ling and Kansa 2004). However, the name is rather mislead-
ing here, since the domain or the analytic problem are not decomposed,
but rather the approximation or the trial space. The technique itself is an
iterative projection method.

To decompose the trial space it suffices to decompose the set of centres
X, or generally the set of data functionals in the sense of (3.8). To be more
precise, let us decompose X into subsets X1, . . . , Xk. These subsets need
not be disjoint but their union must be X. Then the algorithm starts to
interpolate on the first set X1, forms the residual, interpolates this on X2

and so on. After k steps one cycle of the algorithm is complete and it starts
over again. A more formal description is

(1) Set f0 := f , s0 := 0.
(2) For n = 0, 1, 2, . . .

For r = 1, . . . , k

fnk+r := fnk+r−1 − sfnk+r−1,Xr

snk+r := snk+r−1 + sfnk+r−1Xr,

If ‖f(n+1)k‖L∞(X) < ε stop.

This algorithm approximates the interpolant sf,X = f∗ from (3.4) up to the
specified accuracy. The convergence result is based upon the fact that the
interpolant sf,X is also the best approximant to f from the subspace KX of
(7.5) in the native Hilbert space norm. This optimality is another instance
of Guideline 3.1 which we suppressed in Section 3 for brevity.

Convergence is achieved under very mild assumptions on the decomposi-
tion. The data sets Xj have to be weakly disjoint meaning that Xj 
= Yj

and Yj+1 
= Yj for each 1 ≤ j ≤ k − 1, where Yj = ∪k
i=jXi, 1 ≤ j ≤ k. This

is, for example, satisfied, if each Xj contains at least one data site, which is
not contained in any other Xi.

Theorem 8.1. Let f ∈ K be given. Suppose X1, . . . , Xk are weakly dis-
tinct subsets of Ω ⊆ R

d. Set Yj = ∪k
i=jXi, 1 ≤ j ≤ k. Denote with s(j)
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the approximant after j completed cycles. Then there exists a constant
c ∈ (0, 1) so that

‖f∗ − s(n)‖K ≤ cn‖f‖K.
For a proof of this theorem and for a more thorough discussion on how the

subsets Xj have to be chosen we refer the reader to the literature (Beatson
et al. 2000b, Wendland 2005b).

For an efficient implementation within multipole codes we need not only
the far field or multipole expansion of the kernel. Since the coefficients of
the sum (8.1) are now changing with every iteration, we also need intelligent
update formulas. Finally, the decomposition of X into X1, . . . , Xk has to
be done in such a way that the local interpolants and the (global) residuals
can be computed efficiently.

Theorem 8.1 suggests a hidden connection to preconditioning, if the local
problems are solved by approximate inverses of the local submatrices. But
this is an open research question.

8.3. Partitions of unity

Any iterative method for solving the system (3.5) leads to a full O(N)-
term solution of the form (3.4). Unless the inverse of the kernel matrix is
sparse, every data site xk has some influence on every evaluation point x,
even if compactly supported kernels are used. To improve locality in the
sense of letting only nearby data locations xj influence the solution at x,
multipole methods are a possible choice. Moving least squares approximants
have this property by definition, but they need recalculation at each new
evaluation point, because they calculate values, not functions. Partitions of
unity are a compromise, because they allow us to patch local approximating
functions together into a global approximating function, allowing a cheap
local function evaluation.

While the ‘domain decomposition’ methods above decompose the data set
rather than the domain, we now actually decompose the domain Ω ⊆ ∪M

j=1Ωj

in an overlapping manner into simple small subdomains Ωj which may, for
instance, be Euclidean balls. Associated to this covering {Ωj} we choose a
partition of unity, i.e., a family of weight functions wj : Ωj → R, which are
nonnegative, supported in Ωj , and satisfy

M∑
j=1

wj(x) = 1, x ∈ Ω.

These weight functions are conveniently chosen as translates of kernels
which are smooth and compactly supported, but not necessarily positive
definite. If balls are used, and if the problem is isotropic, the kernels should
be compactly supported radial basis functions.
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Finally, we associate to each cell Ωj an approximation space Vj and an
approximation process which maps a function f : Ωj → R to an approx-
imation sj : Ωj → R. This approximation process can, for example, be
given by local interpolants using only the data sites Xj = X ∩ Ωj . How-
ever, the whole procedure works for arbitrary approximation processes, e.g.,
for approximations by augmented finite elements bases, thus leading to the
generalized finite element method (Melenk and Babuška 1996, Babuška and
Melenk 1997, Babuška, Banerjee and Osborn 2002, Babuška et al. 2003)

In the end, the global approximant is formed from the local approximants
by weighting:

s(x) =
M∑

j=1

wj(x)sj(x), x ∈ Ω.

From the partition of unity property, we can immediately see that

|f(x) − s(x)| =

∣∣∣∣∣
M∑

j=1

[f(x) − sj(x)]wj(x)

∣∣∣∣∣
≤

M∑
j=1

|f(x) − sj(x)|wj(x)

≤ max
1≤j≤M

‖f − sj‖L∞(Ωj)

implies the following rule.

Guideline 8.2. The partition of unity approximant is at least as good as
its worst local approximant.

More sophisticated error estimates can be found in the literature (Babuška
and Melenk 1997, Wendland 2005b), also including bounds on the derivatives
(simultaneous approximation). In the latter case, additional assumptions
on the partitions and the weight functions have to be made. However,
for an efficient implementation of the partition of unity method, these are
automatically satisfied in general.

To control the complexity of evaluating the partition of unity approxi-
mant, the cells must not overlap too much, i.e., every x ∈ Ω has to be
contained in only a small number of cells and these cells must be easily
determinable. Moreover, each local approximant has to be evaluated effi-
ciently. Keeping Guideline 8.2 in mind, this often goes hand in hand with
the fact that the regions are truly local, meaning that their diameter is of
the size of the fill distance or the separation distance. For example, if the
local approximation process employs polynomials, a diameter O(hX,Ω) of
local domains guarantees good approximation properties of the local ap-
proximants by a Taylor polynomial argument. If interpolation by kernels is
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employed, it is more important that the number of centres in each cell can
be considered constant when compared to the global number of centres. In
each case we have to assume that the number of cells is roughly propor-
tional to the number of data sites. In this situation, all local interpolants
can be computed in linear time provided that the local centres are known.
Hence, everything depends upon a good data structure for both the centres
and the cells, which can be provided by tree-like constructions again. We
summarize as follows.

Guideline 8.3. Localization strategies within kernel methods should try
to use a fixed or at least globally bounded number of data in each local
domain. This applies to panels in multipole expansions, to domain decom-
position methods, to partitions of unity, to preconditioning by local cardinal
bases, and to all stationary methods.

The proper choice of scalings of kernels or influence regions is a major re-
search area in theory, while proper programming and experimentation gives
good practical results. Note that partitions of unity provide a localization
strategy which helps with the scaling dilemma and mimics a stationary
situation.

Finally, the easiest way to construct the partition of unity weight func-
tions wj is by employing moving least-squares in its simplest form, namely
Shepard approximants (see Section 7).

8.4. Multilevel and compactly supported kernels

We now turn to a method tailored in particular to compactly supported
kernels. We know from Section 7 that interpolation in the stationary setting
will not lead to convergence. Moreover, to guarantee solvability, the same
support radius for all basis functions has to be used. In a certain way, this
contradicts a well-known rule from signal analysis as follows.

Guideline 8.4. Resolve coarse features by using a large support radius,
and finer features with a smaller support radius.

To obey Guideline 8.4, the following multilevel scheme is useful. We first
split our set X into a nested sequence

X1 ⊆ X2 ⊆ · · · ⊆ Xk = X. (8.5)

If X is quasi-uniform, meaning that the separation radius qX of (7.7) has
size comparable to the fill distance hX,Ω of (7.6), then the subsets Xj should
also be quasi-uniform. Moreover, they should satisfy qXj+1 ≈ cqXj and
hXj+1,Ω ≈ chXj ,Ω with a fixed constant c.

Now the multilevel method (Floater and Iske 1996, Schaback 1997) is
simply one cycle of the domain decomposition method. But this time we
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use compactly supported basis functions with a different support radius at
each level. We could even use different basis functions at different levels.
Hence, a general formulation proceeds as follows. For every 1 ≤ j ≤ k we
choose a kernel Kj and form the interpolant

sf,Xj ,Kj =
∑

xj∈Xj

cxj (f)Kj(·, xj)

by using a kernel Kj on level j. We have in mind to take Kj(x, y) as
K((x − y)/δj) with a compactly supported basis function K and a scaling
parameter δj proportional to hXj ,Ω. The idea behind this algorithm is that
one starts with a very thin, widely spread set of points and uses a smooth
basis function to recover the global behaviour of the function f . In the next
level a finer set of points is used and a less smooth function possibly with a
smaller support is employed to resolve more details, and so on.

As we said before, the algorithm performs one cycle of the domain de-
composition algorithm:

set f0 = f and s0 = 0.
for 1 ≤ j ≤ k

sj = sj−1 + sfj−1,Xj ,Kj

fj = fj−1 − sfj−1,Xj ,Kj

The method shows linear convergence between levels (Schaback 1997), but
a thorough theoretical analysis is a hard research problem with only partial
results known (Narcowich, Schaback and Ward 1999, Hales and Levesley
2002).

8.5. Preconditioning

The localization techniques used above can be modified to enable specific
preconditioning methods. Any good preconditioning technique must some-
how implement an approximate inverse to the linear system to be solved.
This can be done classically by partial LU or Cholesky factorization, but
it can also be done by approximately inverting the matrices of the sub-
problems introduced by localization. This approximate inversion of local
kernel matrices is a transition from the basis K(·, xj) to local cardinal or
Lagrangian functions, as (3.7) and (3.5) show.

Such methods are around for a while (Faul and Powell 1999, Mouat 2001,
Schaback and Wendland 2000b) and have also been demonstrated to be
quite effective within meshless kernel-based methods for solving partial dif-
ferential equations (Ling and Kansa 2004, Brown et al. 2005, Ling and
Kansa 2005). We have to leave details to the cited literature, but here is
again a promising research field. In particular, considering the limit for
wide-scaled analytic kernels reveals unexpected connections to polynomial
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interpolation (Schaback 2005a) and allows us to handle cases beyond all
condition limits (Driscoll and Fornberg 2002, Larsson and Fornberg 2005).

9. Kernels on spheres

Expansions of the form (5.1) play a less important role for kernels defined
on R

d. There, continuous Fourier or Laplace transform techniques dominate
the theory of characterizing and analysing such kernels.

The situation changes, if kernels on tori and spheres, or more generally,
on compact (homogenous) Riemannian manifolds (Narcowich 1995, Dyn
et al. 1999) are considered. There, expansions of the form (5.1) are natural.
Also, the summation of feature functions in learning theory, as described in
Section 5 and leading to Mercer kernels, is a standard application area for
kernels defined by summation of products.

As a placeholder for more general situations, we will shortly outline the
theory of approximation by kernels on the sphere

Sd−1 := {x ∈ R
d : ‖x‖2 = 1} ⊆ R

d.

However, since there are some nice overview articles and books on approxi-
mation on the sphere including results on positive definite kernels (Freeden,
Schreiner and Franke 1997, Freeden, Gervens and Schreiner 1998, Fasshauer
and Schumaker 1998), and since this topic has also been covered in surveys
and books on radial basis functions (Buhmann 2000, Wendland 2005b),
we will restrict ourselves only to a basic introduction and some very recent
results.

9.1. Spherical harmonics

On the sphere, the basis functions ϕi in (5.1) are given by spherical har-
monics (Müller 1966). Here, we use the fact that a spherical harmonic is
the restriction of a homogenous harmonic polynomial to the sphere. We
will denote a basis for the set of all homogenous harmonic polynomials of
degree 
 by

{Y�,k : 1 ≤ k ≤ N(d, 
)},
where N(d, 
) denotes the dimension of this space. Moreover, the space
of polynomials of degree at most L, restricted to the sphere πL(Sd−1) =
πL(Rd)|Sd−1 possesses the orthonormal basis

{Y�,k : 1 ≤ k ≤ N(d, 
), 0 ≤ 
 ≤ L}
and any L2(Sd−1) function f can be expanded into a Fourier series

f =
∞∑

�=0

N(d,�)∑
k=1

f̂�,kY�,k with f̂�,k = (f, Y�,k)L2(Sd−1),



592 R. Schaback and H. Wendland

where (·, ·)L2(Sd−1) is the usual L2(Sd−1) inner product.
To understand and investigate zonal basis functions, which are the ana-

logue of radial basis functions on the sphere (see Section 2), we need the
well-known addition theorem for spherical harmonics. Between the spher-
ical harmonics of order 
 and the generalized Legendre polynomial P�(d; ·)
of degree 
 there exists the relation

N(d,�)∑
k=1

Y�,k(x)Y�,k(y) = N(d,�)
ωd−1

P�(d;xT y), x, y ∈ Sd−1. (9.1)

Here ωd−1 denotes the surface area of the sphere in R
d.

9.2. Positive definite functions on spheres

After introducing spherical harmonics, we can write down the analogue of
the kernel expansion (5.1) as

K(x, y) =
∞∑

�=0

N(d,�)∑
k=1

a�,kY�,k(x)Y�,k(y), x, y ∈ Sd−1. (9.2)

Such a kernel is obviously positive definite if all coefficients a�,k are positive,
following Guideline 5.4 concerning positive transforms. Here and in the rest
of this section we will assume that the coefficients decay sufficiently fast,
such that all series are absolutely convergent and lead to continuous kernels.

However, as in the R
d case, such general kernels are hardly used. Instead,

radial or zonal kernels are employed, following Guideline 2.10.

Definition 9.1. A kernel K : Sd−1 × Sd−1 is called radial or zonal if
K(x, y) = ϕ(dist(x, y)) = ψ(xT y) with univariate functions ϕ, ψ and the
geodesic distance dist(x, y) = arccos(xT y). The function ψ is sometimes
called the shape function of the kernel K.

Suppose that a�,k = a�, 1 ≤ k ≤ N(d, 
). Then, by the addition theorem
(9.1), we have

K(x, y) =
∞∑

�=0

a�N(d,�)
ωd−1

P�(d;xT y) =:
∞∑

�=0

b�P�(d;xT y),

which shows that K is radial or zonal. Conversely, if K is radial we can
expand the shape function ψ using the orthogonal basis P�(d; ·) for L2[−1, 1]
to get

K(x, y) =
∞∑

�=0

b�P�(d;xT y).

The addition theorem and the uniqueness of the Fourier series suffice to
prove the following result.
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Theorem 9.2. A kernel K of the form (9.2) with sufficiently fast decaying
coefficients is zonal if and only if a�,k = a�, 1 ≤ k ≤ N(d, 
).

Obviously, a zonal kernel is positive definite if all coefficients b� are pos-
itive. Moreover, it is also necessary that all coefficients are nonnegative
(Schoenberg 1942). However, it is not necessary that all coefficients are
strictly positive (Chen, Menegatto and Sun 2003b). The authors derived
the following characterization.

Theorem 9.3. In order that a zonal kernel Φ is positive definite on Sd−1

with d ≥ 3 it is necessary and sufficient that the set K = {k ∈ N0 : bk > 0}
contains infinitely many odd and even numbers.

The condition in this theorem is no longer sufficient on the unit circle
(Pinkus 2004).

A first and most intuitive example of zonal functions comes from the R
d

case. Suppose K = φ(‖ · ‖2) : R
d → R is a positive definite and radial

function on R
d. Since we have ‖x − y‖2

2 = 2 − 2xT y for x, y ∈ Sd−1, we
see that the restriction of K to Sd−1 has the representation K(x − y) =
φ(‖x − y‖2) = φ(

√
2 − 2xT y), so that it is indeed a zonal function with

shape function ψ = φ(
√

2 − 2·). This immediately gives access to a huge
class of zonal kernels on the sphere which are explicitly known and avoid
calculation of any series.

This also raises the question if there is a connection between the (radial)
Fourier transform K̂ of the positive definite function on R

d and the Fourier
coefficients a� of the zonal function

ψ(xT y) =
∞∑

�=0

a�
N(d,�)
ωd−1

P�(d;xT y).

Interestingly, there is a direct connection, which also shows that almost
all positive definite and radial kernels on R

d define positive definite zonal
kernels on Sd−1 and the Fourier coefficients of the latter are all positive.

Theorem 9.4. (Narcowich and Ward 2004, zu Castell and Filbir
2005) Let K be a positive definite radial function having a nonnegative
Fourier transform K̂ ∈ L1(Rd), and let ψ(xT y) := K(x − y)|x,y∈Sd−1 . For

 ≥ 0, we have that

a� =
∫ ∞

0
tK̂(t)J2

ν (t) dt, ν := 
+ n−1
2 , (9.3)

where Jν is the order ν Bessel function of the first kind. Moreover, if K̂ is
nontrivial, i.e., positive on a set of nonzero measure, then a� > 0 for all 
.

This result was later generalized to conditionally positive definite basis
functions (Narcowich, Sun and Ward 2006).
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9.3. Error analysis

As in the case of (conditionally) positive definite kernels on R
d, error esti-

mates were first derived in the context of the associated reproducing kernel
Hilbert space (Jetter, Stöckler and Ward 1999, Golitschek and Light 2001,
Morton and Neamtu 2002, Hubbert and Morton 2004). Later, results on
escaping the native Hilbert space, i.e., for target functions from a rougher
function space came up (Narcowich and Ward 2004). However, the involved
rougher function spaces were not given by standard Sobolev spaces.

Here, we want to mimic the situation of Theorem 7.8. To this end we
have to introduce Sobolev spaces on the sphere, which can be written as

W τ
2 (Sd−1) =

{
f ∈ L2(Sd−1) :

∑
�,m

(1 + 
2)τ |f̂�,m| <∞
}
.

Naturally, to provide error estimates, the fill distance and the separation
radius have to be redefined using geodesic distance now. If this is done,
then it is possible to show (Narcowich, Sun, Ward and Wendland 2005a)
the following analogue to Theorem 7.8.

Theorem 9.5. Assume τ ≥ β > (d−1)/2 and let ψ generate W τ
2 (Sd−1) as

its reproducing kernel Hilbert space. Given a target function f ∈W β
2 (Sd−1)

and a set of discrete points X ⊆ Sd−1 with mesh norm hX , separation radius
qX and mesh ratio ρX = hX/qX , the error between f and its interpolant
sf,X can be bounded by

‖f − sf,X‖W µ
2 (Sd−1) ≤ Cρβ−µ

X hβ−µ
X ‖f‖

W β
2 (Sd−1)

(9.4)

for all 0 ≤ µ ≤ β.

Note that (9.4) reduces to the expected error estimates when the approx-
imation order is dictated by the rougher Sobolev space and if quasi-uniform
data sets are considered. Finally, we should remark that a zonal function ψ
generates W τ

2 (Sd−1) if its coefficients a� in Theorem 9.2 decay like 
−2τ .

10. Applications of kernel interpolation

Here, we review some practical application areas for kernel techniques which
fit neither into Section 11 on machine learning nor into the final sections on
solving partial differential equations. These techniques perform generalized
interpolation of smooth functions using unstructured data. The background
was described in Section 3 on optimal recovery, with conditional positive
definiteness added from Section 6. Finally, special techniques for handling
large-scale problems from Section 8 will occur at certain places. We group
the applications by certain features that are sufficiently general to enable
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the reader to insert new applications into the right context. Unfortunately,
our references cannot cover the application areas properly.

10.1. Modelling nonlinear transformations

Recovery problems like in (3.5) can of course be made vector-valued, and
then they provide nonlinear multivariate mappings F : R

d → R
n with

specified features expressible as linear conditions. Typical examples are
warping and morphing. Warping is done by a fixed map taking an object
of R

n to another object in R
n, while morphing requires a parametrized

scale of warping maps that describe all intermediate transformations. For
these transformations, some input and output points have fixed prescribed
locations, e.g., keeping eyeballs fixed when morphing two faces, and these
conditions take the form (3.1) or (3.3). Since kernel-based interpolation
allows any kind of unstructured data, it is very easy to generate a warping
or morphing map F with such conditions in any space dimension (Noh,
Fidaleo and Neumann 2000, Glaunés, Vaillant and Miller 2004). However,
the most popular applications (Gomes, Darsa, Costa and Velho 1998) avoid
solving a linear system and prefer simple local techniques. Here is an open
research field.

10.2. Exotic data functionals

This application area uses the fact that kernel techniques can recover func-
tions from very general kinds of ‘data’ which need not be structured in any
way. Any linear functional λj acting on multivariate functions is allowed
in (3.3), provided that the kernel K is chosen to be sufficiently smooth to
make λx

jλ
y
jK(x, y) meaningful.

Guideline 10.1. Kernel methods can handle generalized recovery prob-
lems when the data are given by rather exotic linear functionals.

A typical example (Iske and Sonar 1996, Sonar 1996, Cecil, Qian and
Osher 2004, Wendland 2005a) concerns postprocessing the output of finite
volume methods. These calculate a set of values fj of an unknown function
f which are not evaluations of f at certain nodes xj , but rather integrals of
f over a certain small ‘volume’ Vj . Thus the functionals in (3.3) are

λj(f) :=
∫

Vj

f(t) dt, 1 ≤ j ≤ N.

Usually, the domains Vj form a non-overlapping decomposition of a domain
Ω. Then any recovery f̃ of f along the lines of Sections 3 and 6 will have
the same local integrals as f , and also the global integral of f is reproduced.
Thus postprocessing a finite-volume calculation produces a smooth function
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with correct local ‘finite volumes’. These functions can then be used for
further postprocessing, e.g., calculation of gradients, pressure, or contours.

This technique can be used in quite a general fashion. In fact, one can
always add interpolation conditions of the above type to any other recovery
problem, and the result will have the required conservation property.

Guideline 10.2. Within kernel-based reconstruction methods, it is pos-
sible to maintain conservation laws.

In some sense, morphing also maintains some kind of conservation.
Another similar case occurs when a certain algorithm produces an out-

put function which does not have enough smoothness to be the input of a
subsequent algorithm. An intermediate kernel-based interpolation will help.

Guideline 10.3. Using kernel-based techniques, we can replace a non-
smooth function by a smooth one, preserving any finite number of data
which are expressible via linear functionals.

We stated this in the context of conservation here, but it will occur again
later with a different focus.

A somewhat more exotic case is the recovery of functions f from orbital
derivatives along trajectories X(t) ∈ R

d of a dynamical system (Giesl 2005).
The data at xj are not f(xj) but the derivative of t �→ f(X(t)) at tj of the
trajectory passing through xj = X(tj). This information, when plugged
into a suitable recovery problem, can be used to prove stability of solutions
of dynamical systems numerically, by constructing Lyapunov functions as
solutions to recovery problems from unstructured orbital derivative data.

10.3. Recovery from many scattered values

The recovery of a multivariate function f from large samples of unstructured
data (xj , f(xj)), 1 ≤ j ≤ N on a domain Ω ⊆ R

d theoretically follows
the outlines given in Sections 2 and 3. However, for large N there are
specific problems that need special numerical techniques of Section 8. We
do not repeat these here. Instead, we focus on terrain modelling as a typical
application.

As long as terrains are modelled as elevations z = f(x) described by a
bivariate function f and using gridded data (xj , zj) = (xj , f(xj)) ∈ R

3 as
in current geographic databases (e.g., the US Geological Survey), there are
no serious problems. But the raw elevation data often come in an irregular
distribution, because they are sampled along routes of ships, aeroplanes, or
satellites. This means that the fill distance (7.6) will be much larger than the
separation radius (7.7). The latter is given by the sampling rate along each
route, while the first depends on how well the routes cover the domain. The
problem data live on two different scales: a smaller one along the sampling
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trajectories and a larger one ‘between’ the trajectories. Section 7 tells us
that the recovery error is dominated by the fill distance, while the condition
is determined by the separation radius. This calls for multiscale methods,
which are also necessary in many other applications in geometric modelling.

Multiscale techniques, as described in Section 8, use Guideline 8.4, but
they have to split the given large dataset X into a nested sequence (8.5).
Each subset Xj of the data should be quasi-uniform in the sense of (7.8).
This can be done by sophisticated thinning algorithms (Floater and Iske
1998) and using kernels of different scales at different levels. For details, we
refer the reader to recent books covering this subject (Iske 2004, Dodgson,
Floater and Sabin 2004). A promising new approach via multiscale kernels
(Opfer 2006) directly resolves such problems on several scales, but work is
still in progress.

10.4. Recovery of implicit surfaces

This is different from the previous case, because the resulting surface should
not be in explicit form z = f(x) with x ∈ Ω ⊂ R

2. Instead, the goal is to
find an implicit description of a surface as the level set {x ∈ R

3 : g(x) = 0}
of a scalar function g : R

3 → R. The given data consist of a large set of
unstructured points xj ∈ R

3, 1 ≤ j ≤ N expected to lie on the surface, i.e.,
to satisfy g(xj) = 0 for all j in question. This is an important problem of
reverse engineering , if the data come from a laser scan of a 3D object. The
final goal is to produce an explicit piecewise CAD-compatible representation
of the object from the implicit representation.

The basic trick for handling such problems is to view them as a plain
interpolation problem for g with values 0 at the xj . To avoid the trivial
function a number of points ‘outside’ the object has to be added with values
less than zero and points ‘inside’ with values larger than zero.

To this end, it is assumed that the surface indeed divides R
3 into an inner

and outer part, meaning that the surface is closed and orientable and has
a well-defined outer normal vector at each point. With these additional
assumptions at hand, the first task is to find outer normal vectors for each
point. This can be done by using additional information, such as the position
of the laser scanner, or by trying to fit in each point a local tangent plane to
the surface. In the latter case, the so-calculated normals have to be oriented
consistently, which is, unfortunately, an NP-hard problem. However, there
exist good algorithms producing in most cases a satisfactory orientation
(Hoppe, DeRose, Duchamp, McDonald and Stuetzle 1992, Hoppe 1994).

With these normals at hand, the additional points can be inserted along
the normals. A function value which is proportional to the signed distance to
the surface is assigned to each new point, making the interpolation problem
nontrivial.
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However, this procedure might triple the often already huge number of
data sites, such that efficient algorithms, like those described in Section 8,
are required. For example, this has been successfully demonstrated in
various papers (Carr, Beatson, Cherrie, Mitchell, Fright, McCallum and
Evans 2001, Turk and O’Brien 2002, Ohtake, Belyaev, Alexa, Turk and
Seidel 2003a, Ohtake, Belyaev and Seidel 2003b) and is already well estab-
lished in industry.3

10.5. Transition between different representations

Consider two different black-box numerical programs which have to be
linked together, in the sense that the first produces multivariate discrete
output data describing a function f while the second program needs differ-
ent data of f as its input. This occurs if two FEM programs with different
meshes and elements are used, or if results of a program need some post-
processing.

Everything is fine if the two programs use function representations based
on the same discrete data. Otherwise, an intermediate kernel-based recovery
will be useful. The output data of the first program is taken as input of
a kernel-based recovery process to find a function f̃ close to f . Then the
input data for the second program is derived from f̃ .

A typical field of this application is aeroelasticity. Here, the interaction
between the flow field around an elastic aircraft during flight and the air-
craft itself is studied. A deforming aircraft leads to more realistic lift and
drag and, particularly in the design of large aircrafts, has to be taken into
account.

The black-box solvers involved are the aerodynamic solver for the compu-
tation of the flow field and a structural solver for the computation of the de-
formation of the aircraft. While the flow field is often discretized using high-
resolution finite volume methods in Eulerian coordinates, the structure of
the aircraft is generally described by a coarse finite element discretization in
Lagrangian coordinates. The exchange of information is limited to transfer
forces from the aerodynamic program to the structural mesh and displace-
ments from the structural mesh to the aerodynamical one. In particular
the latter can be modelled as a scattered data interpolation problem. This
has been done successfully, for example, in a series of papers (Farhat and
Lesoinne 1998, Beckert 2000, Beckert and Wendland 2001, Ahrem, Beckert
and Wendland 2005) and is already on its way to become an industry stan-
dard. The exchange of forces is in general differently achieved such that the
sum of all forces and the virtual work are conserved between both models.

3 http://www.farfieldtechnology.com/

http://aranz.com/research/
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Interestingly, an early application (Harder and Desmarais 1972) in aircraft
engineering is the first paper in which thin-plate or surface splines were used
in a scattered data interpolation problem, while the theory arrived four years
later (Duchon 1976).

11. Kernels in machine learning

The older literature on radial basis functions was dominated by applications
in neural networks, in which sigmoid response functions were gradually re-
placed by radial basis functions over the years. Many papers of this kind
call a function (3.4) with a radial kernel a radial basis function network.
We do not want to explain this machinery in detail here, because kernels
provide a much more general and flexible technique replacing classical neu-
ral networks in learning algorithms. There are close connections of machine
learning to pattern recognition and data mining, but we have to be brief
here and prefer to focus on learning, leaving details to standard books on
machine learning with kernels (Schölkopf and Smola 2002, Shawe-Taylor
and Cristianini 2004).

11.1. Problems in machine learning

We start with an introduction to the notions of machine learning, based on
the recovery problems in Section 3. These are subsumed under supervised
learning , because the expected response yj to an input xj ∈ Ω is provided
by the unknown ‘supervisor’ function f : Ω → R. If the target data yj

can take non-discrete real values, the supervised recovery problem is called
regression, while the case of discrete values is called classification. In the
latter case the input set Ω is divided into the equivalence classes defined
by the different target values. After learning, the resulting function f̃ ≈ f
should be able to classify arbitrary inputs x ∈ Ω by assigning one of the
finitely many possible target values. For instance, a classification between
‘good’ and ‘bad’ inputs x+

j and x−j can be done by finding a hyperplane in
feature space which separates the features Φ(x+

j ) and Φ(x−j ) of ‘good’ and
‘bad’ inputs in a best possible way. This can be done by linear algebra or
linear optimization, and is an instance of Guideline 2.2.

In many applications, classification is reduced to regression by:

(1) embedding the discrete target values into the real numbers,
(2) solving the resulting regression problem by some function f̃ ,
(3) classifying new inputs x by assigning the discrete target value closest

to f̃(x).

Thus we shall focus on regression problems later, ignoring special techniques
for classification.
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Unsupervised learning has inputs xj ∈ Ω but no given target responses
yj associated to them. The goal for learning is given semantically instead.
A frequent case is clustering , which is classification with just a few tar-
get values whose calculation is part of the problem. Another unsupervised
technique is the determination of anomalies, outliers, or novelties. This
can be seen as a classification where only the ‘normal’ inputs are known
beforehand, while future ‘abnormal’ inputs have to be detected. A more
general topic closely related to unsupervised learning is data mining , which
attempts to discover unknown relations between given data (Hastie, Tib-
shirani and Friedman 2001), but we cannot go into details.

11.2. Linear algebra methods in feature space

Many pattern recognition or learning techniques apply a linear algebra tech-
nique in feature space, and thus they use Guideline 2.2. Since the kernel
matrix contains all geometric information on the learning sample, the al-
gorithms are based on the kernel matrix or on information derived from it.
A simple novelty detection could, for instance, just check how far a new
feature vector Φ(x) is away from the mean of the ‘normal’ feature vectors
Φ(xj) and declare it ‘abnormal’ if it is ‘too far away’. Of course, there are
statistical background arguments to support certain decision rules.

Primitive binary classification can take the means µ+ and µ− of the fea-
ture vectors Φ(x+

j ) and Φ(x−j ) of the ‘good’ samples x+
j and ‘bad’ samples

x−k , and then classify a new input x by checking whether Φ(x) is closer to
µ+ or µ−. Of course, there are more sophisticated methods with statistical
foundations, but the upshot is that a kernel defined via a feature map is all
that is needed to start a linear algebra machinery, ending up with certain
statistical decision rules.

A very important background technique for many pattern recognition
and learning algorithms is to attempt a complexity reduction of the input
data first. If this is possible, anomalies can be detected if they do not fit
properly into the reduction pattern for the ‘normal’ data. The most widely
used method for complexity reduction proceeds via principal component
analysis, which in the case of kernel-based methods boils down to a singular-
value decomposition of the kernel matrix followed by projection onto the
eigenspaces associated to large singular values.

11.3. Optimization methods in feature space

But the most important numerical methods in machine learning are opti-
mizations, not linear algebra techniques. For illustration, we take a closer
look at unsupervised learning in the regression case, which in Section 3
was called a recovery problem. The reproduction–generalization dilemma
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stated in Guideline 3.3 is observed in machine learning by minimizing both
a loss function penalizing the reproduction error and a regularization term
penalizing instability and assuring generalization. These two penalty terms
arise in various forms and under various assumptions, deterministic and
nondeterministic, and they can be balanced by taking a weighted sum as an
objective function for joint minimization. A typical deterministic example
is (7.13) summing a least-squares loss function and a native space norm
penalty term. Another case is the sup-norm loss function

ε := max
j

|yj − f(xj)|

arising indirectly in (3.9) and added to the native space norm to define the
objective function 1

2‖f‖2
K + Cε to be minimized.

Both cases, like many others in machine learning, boil down to quad-
ratic optimization, because (2.6) allows explicit and efficient calculation of
the native space norm on the trial space (2.3) via the kernel matrix defined
for the training data. This applies to all techniques using the quadratic
penalty

α ∈ R
N �→ αTAK,Xα = ‖f‖2

K (11.1)

to guarantee stability and generalization. For large training samples, the
resulting quadratic programming problems have to cope with huge positive
definite kernel matrices in their objective function, calling for various ad-
ditional numerical techniques like principal component analysis to keep the
complexity under control. Of course one can also get away with linear op-
timization if the quadratic term is replaced by minimization of terms like
‖AK,Xα‖∞ or ‖√AK,Xα‖∞ with a similar penalty effect. Again, the kernel
matrix is the essential ingredient.

But this technique is not limited to learning algorithms. One can use it
for regularizing many other methods, because one has a cheap grip on high
derivatives.

Guideline 11.1. Quadratic penalty terms (11.1) using the square of the
native space norm of a kernel-based trial function are convenient for regu-
larizing ill-posed problems.

Since this only requires the trial space to consist of translates of a single
positive definite kernel, and since such trial spaces have good approximation
properties, kernel-based methods are good candidates for solving ill-posed
and inverse problems (Lewitt, Matej and Herman 1997, Hon and Wu 2000b,
Cheng, Hon, Wei and Yamamoto 2001b, Cheng, Hon and Yamamoto 2001a,
Green 2002, Hon and Wei 2002, 2003, 2005). Solving ill-posed and inverse
problems by kernel techniques has a promising future.
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11.4. Loss functions

After looking at the penalty for instability, we have to focus on the loss
function, while we assume an at least quadratic optimization using (11.1)
as part of the objective function. There are various ways to define loss, but
they have seriously different consequences, not only from a statistical, but
also from a numerical viewpoint. We ignore the vast literature on statistical
learning theory here and focus on computationally relevant questions with
implications for other kernel-based techniques.

The quadratic least-squares loss in (7.13) has the consequence to add
a constant diagonal to the kernel matrix. This is the old Levenberg–
Marquardt regularization of least-squares problems, but it has the disad-
vantage that the solution will not have a reduced complexity. The resulting
coefficient vector α ∈ R

N for N training samples will not necessarily have
many zeros, so that the kernel-based model (3.4) has full O(N) complexity.

On the other hand, Guidelines 3.16 and 3.17 tell us that a complex-
ity reduction should be possible, using only n � N terms in the solution
(3.4). This is achieved by using linear loss constraints like (3.9) instead of
quadratic ones. Then the Kuhn–Tucker theory restricts the optimal solu-
tion via the active constraints. In the literature on machine learning, this
is the support vector machine philosophy, because the feature vectors Φ(xj)
for the ‘active’ indices j with |f(xj) − yj | = ε are called ‘support vectors’
for some reason or other.

Guideline 11.2. Complexity reduction via linear loss constraints is useful
for most recovery situations, deterministic or non-deterministic.

Since many numerical methods can be reformulated as recovery prob-
lems, this has an unexpectedly wide range of possible applications. We use
it for adaptive meshless collocation methods in Section 14. There are good
chances that future methods for PDE solving will take the form of adap-
tive optimization routines with linear loss constraints leading to complexity
reduction.

11.5. Kernels in learning theory

Theoretical research on learning has close connections to approximation
theory, and it is naturally focusing on kernels (Smola and Schölkopf 1998,
Cucker and Smale 2001, Schölkopf and Smola 2002, Zhou 2002, Smale and
Zhou 2003, Poggio and Smale 2003). Most of this is based on statistical
learning theory. Since we want to stay on the numerical analysis side, we
only present the most important connection to approximation by kernels.

A central question in supervised learning is to have bounds for the nec-
essary number N of training data (xj , yj) to guarantee the availability of
a trained model f̃ , based on these data, which has a small generalization
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error ‖f − f̃‖Ω ≤ ε in some norm ‖ · ‖Ω over the input domain Ω. This
problem can be handled using Theorem 7.8. In particular, if the true model
f lies in some Sobolev space W β

2 (Ω) containing the native space for our
kernel, and if X is a quasi-uniform sample set of N points in Ω with fill
distance hX,Ω, we can find an exact data reproduction sf,X based on X

such that Theorem 7.8 provides an error bound of order hβ−µ
X,Ω ‖f‖

W β
2 (Ω)

for
the generalization error in the Sobolev norm ‖ · ‖W µ

2
(Ω). Thus the neces-

sary number N ≈ h
−1/d
X,Ω of training samples to handle all nonzero unknown

functions f ∈W β
2 (Ω) to an error ‖f − f̃‖W µ

2 (Ω) ≤ ε behaves like

N ≥ C ·
(

ε
‖f‖

W
β
2 (Ω)

) −d
β−µ

for 0 ≤ µ < β. Guideline 3.13 arises here again, because smoothness of the
kernel and the model pays off. There are similar bounds in other norms, but
we do not go into details. Unfortunately, there are no deterministic results
yet which support Guideline 3.16 in a quantitative way, reducing N if the
reproduction quality is relaxed.

12. Meshless methods

Here, we start considering applications of kernels within methods solving
partial differential equations. These are published in abundance, mainly in
journals focusing on computational techniques in engineering and sciences,
and this paper should help the user to sort them out properly. To this end,
we derive some guidelines for using kernels in numerical methods, but this
will need some general considerations first. To set the stage properly, we
recall the fundamental dichotomies between

• strong and weak problem formulations
• test and trial functions
• stationary and nonstationary scales of trial spaces
• implicit or explicit shape functions
• symmetric and unsymmetric methods

and consider

• regularity of solutions
• consistency, i.e., reproduction of polynomials
• adaptivity
• necessity of global spatial discretizations
• numerical integration.

These issues are intimately related, as we shall see.



604 R. Schaback and H. Wendland

12.1. Strong and weak problems

Strong problems define solutions as functions satisfying a partial differential
equation and certain boundary conditions pointwise, employing evaluations
of functions and classical derivatives. Weak problems replace point eval-
uations by local integrations against test functions or (weak) derivatives
thereof, introducing numerical integrations. Both apply ‘tests’ to check
whether a ‘trial’ function is a solution. Their difference is not on the ‘trial’
side, but on the ‘test’ side. We shall come back to this later.

Strong methods can be called ‘integration-free’, and this is often more
important than the notion of ‘mesh-free’ or ‘meshless’. As far as point eval-
uations are concerned, there is no big difference between weak and strong
methods, since the weak methods also use strong function values for their
integration routines. The crucial point of weak formulations, however, is to
apply integration by parts to the integrals of derivatives against test func-
tions, thus reducing the necessary order of differentiability and allowing
Hilbert space methods like Dirichlet’s principle.

Strong formulations imply stronger regularity assumptions, i.e., classical
differentiability with Hölder continuity of the highest derivatives occurring
in the differential equations. Weak formulations can get away with lower
regularity and lower-order derivatives, but the derivatives are not classical
ones. While this argument is independent of numerical methods, regularity
is closely connected to them, since convergence orders usually increase with
regularity.

Guideline 12.1. If the PDE problem has a rather regular solution, the
user should apply techniques that make use of this regularity, and can choose
between weak and strong problem formulations. If the solution will defi-
nitely have low regularity, the user should first try to convert the problem
to another with more regularity, e.g., by giving expected singularities or dis-
continuities a special treatment. If the final problem still leads to a solution
with low regularity, the user is forced to pose a weak problem, but must
expect poor numerical performance of any numerical method.

If there is enough regularity to have a choice between weak and strong
problems, the connection of the problem formulation to numerical integra-
tion becomes important. Weak formulations introduce additional numerical
integrations which are not necessary for strong formulations. These numeri-
cal integrations increase the algorithmic complexity and introduce a possibly
avoidable source of numerical errors.

Guideline 12.2. Strong problem formulations avoid certain numerical
integrations, but they have to assume higher regularity than weak formu-
lations.
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The integration error can be quite serious (Ciarlet 1991, Babuška et al.
2002) and needs a careful selection of integration techniques. In particular,
if regularity is high to allow high-order methods like h-p finite elements in
a weak formulation, the integration quality must be increased properly to
adjust to the convergence order, so that the final error is not dominated by
the one induced by numerical integration. This makes it questionable to
go for a weak problem formulation in the case of high regularity, because
strong formulations without integrations become an option in that case.

12.2. Trial functions

If we rule out purely discrete techniques like plain finite differences, the ap-
proximate solutions of partial differential equations are usually represented
as linear combinations of trial functions. These come in a great variety,
e.g., as polynomials, piecewise polynomials (splines, box splines, or finite
elements), shape functions, particle functions, generalized finite elements,
wavelets, or kernel translates. Furthermore, they do not come singly, but
usually as a whole scale of spaces, and then the question of stationary or
nonstationary scaling comes up as in Section 7. Let us have a closer look
at trial spaces in general in order to see where kernels are useful.

Guideline 12.3. Trial functions should

• provide a good approximation to the solution,
• be effectively evaluable,
• easy to modify, and
• easy to integrate numerically, in the case of weak problems.

They should only in the latter situation be dependent on the test side. We
shall now look at these properties one by one, starting with approximation
properties.

In many cases, e.g., for finite elements, scales of trial spaces attain their
approximation power via a geometric domain discretization of the underly-
ing domain up to some granularity h describing something like the maximum
diameter of a local polyhedral support of a trial function. Certain methods
using shape functions or translated kernels do not split the domain geomet-
rically, but use a cloud of points that ‘fills’ the domain so that h is a fill
distance such as (7.6), which measures the radius of the largest ball with
centre in the domain but without one of the data points. In both cases,
there is a domain discretization involved.

But as far as approximation power is concerned, it is by no means manda-
tory that a scale of trial spaces requires a geometric global domain discretiza-
tion of any kind.

Guideline 12.4. If the expected solution of a problem has a good approx-
imation from a low-dimensional space of global functions, the trial space
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should be selected accordingly, without discretizing the domain at all. If
singularities of known form and place are to be expected, they should be
included into the trial space, no matter what the actual numerical method is.

Note that a possibly missing space discretization for the trial space is just
one aspect when looking at ‘meshless methods’. There may be integration
nodes in certain cases, and there may be a space discretization for the test
side which we have not yet looked at. Currently, most meshless methods are
still using global space discretizations, but allow us to add adaptive local
refinement when necessary. However, the user should keep in mind that
spectral methods (Fornberg and Sloan 1994) or general trial spaces without
space discretization are to be considered as alternatives when the expected
properties of the solution allow them.

Guideline 12.5. High approximation orders are not related to domain
discretization, but to smoothness. They are achievable if the solution of the
problem is sufficiently smooth. This is independent of the trial space. But
they also require a trial space that can make use of that smoothness.

Such spaces must have higher smoothness themselves, as in the p-version
of the finite element method. A trial space with good approximation proper-
ties should thus have p-adaptivity in the sense that it guarantees the highest
possible approximation order attainable for the (unknown) smoothness of
the solution. By Section 7 and Guideline 7.9 we know that nonstation-
ary scales of kernel-based trial spaces have both a p- and h-adaptivity, but
theory still requires a space discretization with a small fill distance h, be-
cause it focuses on a worst-case scenario. It is a future challenge to provide
a sound mathematical basis for data-dependent h-type adaptivity such as
the support vector technology within machine learning. Future adaptive
optimization strategies for PDE solving should use Guideline 3.18 and se-
lect spatial resolutions locally where needed, and automatically yield opti-
mal local approximation orders depending on the local smoothness of the
solution.

Some applications require good approximations of higher derivatives of
the solution, e.g., if pressure or stress is to be evaluated from displacements
ion mechanics. This calls for smooth trial functions.

Guideline 12.6. Because the node connectivity problems of piecewise
polynomials increase dramatically with smoothness requirements and space
dimension, it is much easier for meshless kernel-based methods than for fi-
nite elements to generate smooth trial spaces, in particular for higher space
dimensions.

Standard results concerning numerical methods for solving ODEs and
time-dependent PDEs suggest that good convergence orders are obtained
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by high-consistency orders, provided that stability is satisfied. This is not
directly related to the approximation power of trial spaces. Unfortunately,
consistency occurs in quite a number of application papers on meshless
methods in a nonstandard way, and we shall later describe its questionable
use there.

We now leave approximation quality and focus on evaluation efficiency
of trial functions. Though not standard in the literature, we distinguish
between explicit and implicit evaluation of trial functions. For explicit eval-
uation, there is a simple formula, e.g., exp(−0.3 ∗ ‖x− xj‖2

2), for each trial
function, and there is no need to look up a number of other nodes or to
evaluate geometric data. This is the standard technique for kernel-based
trial spaces. Implicit evaluation means that each trial function value is the
result of a subroutine call to a function that depends on multiple data in
a somewhat complex and geometry-dependent way. This applies to finite
elements and all ‘shape functions’ which are the result of pointwise local
optimizations like moving least squares of Section 7.

Guideline 12.7. If applications need to evaluate the solution on extremely
many points, implicit trial spaces may not be the best choice.

It often happens that the calculation of the parameters of the represen-
tation of a solution is faster than the generation of all values needed for
postprocessing, e.g., for visualization. Then evaluation becomes more im-
portant than solving. A posteriori display of a scattered-data interpolant to
the actual solution along the lines of Section 7 is always possible, of course,
but it is a problem of its own and induces additional errors.

Another efficiency argument arises when the dimension of the trial space is
large. This should be avoided following Guideline 12.4, but it always occurs
if the trial space is using a space discretization with fine granularity. Even
if there is not too much connectivity between geometric information, i.e.,
if the method is meshless, we need to have a fast method for range queries
retrieving neighbours of nodes. Similar problems always come up when trial
spaces need some localization. There are various ways to cope with it, e.g.,
wavelets, multipole, partition-of-unity, and multilevel methods, but they all
seem to be closely connected to the choice of a useful basis, either a priori
or adaptively. This brings us to the next issue: the adaptivity properties of
trial spaces.

The really serious situations for the choice of the trial space occur when
singularities will arise, but at places not known beforehand. This is the
case for certain fluid dynamics, advection-diffusion, or crack propagation
problems. However, it does not make sense to use a fine global space dis-
cretization when there will be just a local effect that calls for a finer local
resolution. This is observed by plenty of adaptive methods. They some-
times just re-mesh a global space discretization locally where necessary, or
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they add new and more flexible elements into the fixed basic triangulation,
but both of these tasks are not easy. Particle- or kernel-based methods us-
ing clouds of scattered points can adapt by adding or deleting points where
necessary, but they usually do not need to update geometric contingency
information that arises with meshes or triangulations. This is the punch-
line when meshless methods are characterized (Belytschko et al. 1996b) as
constructing the approximation entirely in terms of nodes. The cited article
considers meshless approximations based on

• moving least squares
• kernels
• partitions of unity

and states that these three methods are in most cases identical except for
the important fact that partitions of unity enable p-adaptivity to be achieved.
Furthermore, kernels occur in all three, and this is another reason why ker-
nels are a central tool in meshless methods. Some authors even talk of truly
meshless methods when they want to stress that they do not need numer-
ical integration, but we suggest stating precisely to which extent spatial
discretizations need to be maintained, and whether the trial functions can
be accessed explicitly or implicitly.

12.3. Kernel-based trial spaces

At this point, we should show how ‘representability in terms of nodes’ is
understood in meshless methods and how it is related to kernel-based trial
functions, establishing a very close connection of nearly all meshless methods
to kernels. The idea of ‘nodes’ is roughly the same as the ‘centres’ for
standard kernel approximations as in Section 7. In the simplest case, the
trial space should be spanned by multivariate functions ϕi(x, xi), i ∈ I,
which are functions of x ∈ R

d depending on a single ‘node’ or ‘centre’
or ‘particle position’ xi ∈ R

d. This function can be seen as a ‘smoothed
particle’ as in smoothed particle hydrodynamics, SPH (Monaghan 2005),
and it is called shape function or particle function in the literature. For
a meshless method, there should be no complicated geometric connection
between nodes like a triangulation of the convex hull of the nodes with the
nodes as vertices (this could then be called a ‘mesh’). It should be easy
to extend the trial space by adding some new nodes and associated trial
functions (this is called ‘h-adaptivity’ in FEM terms) without updating the
connectivity information. In this sense, meshless methods can be seen as
an alternative to adaptive finite element methods.

For many reasons, the functions ϕi(x, xi) in meshless methods should be

• translation-invariant and
• compactly supported around the node xi.
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This implies that they should necessarily have the form

ϕi(x, xi) := K
(
x− xi

)
, i ∈ I (12.1)

with a compactly supported translation-invariant kernelK of small support,
provided that they depend on no other neighbouring node.

Guideline 12.8. Translation-invariant trial functions for meshless meth-
ods are always kernel-based, if they are dependent on a single node.

This implies that trial spaces spanned by functions of the form (3.4) occur
canonically in meshless methods, and the previous sections have accumu-
lated much information on those spaces.

But the literature on meshless methods also uses ‘shape functions’ de-
fined implicitly via local processes such as moving least squares. Then the
resulting trial functions depend on more than one node, though this is often
ignored in the notation. In fact, for each node xi there is a trial function ϕi

depending on xi and some of its neighbours, if they fall within the support
of the weight function associated to the node xi. Kernels occur here only via
the weight functions used, and they need not be positive definite. For scat-
tered nodes, the resulting trial functions will not be translation-invariant.

12.4. Reproduction of polynomials

For MLS-based shape functions, we know from Section 7 that polynomial
reproduction∑

i∈I

p(xi)ϕi(x) = p(x) for all x ∈ R
d, p ∈ πm(Rd) (12.2)

can be achieved under mild additional assumptions, where πm(Rd) stands
for the space of d-variate polynomials of degree at most m. Note that the
partition of unity property (7.17) coincides with polynomial reproduction
of degree zero.

In application papers, polynomial reproduction properties are often called
consistency conditions (Belytschko et al. 1996b), and very many papers seem
to understand reproducing kernels via the above reproduction property, not
via (2.9) in Hilbert spaces. Some also seem to assume that convergence
follows as soon as there is a consistency condition of some nonnegative or-
der in the above sense, but this argument has no solid foundation, since
the usual Lax-type theory understands consistency differently and is mod-
elled for discretizations of time-dependent problems. Mathematicians will
find plenty of open questions concerning convergence and error bounds of
meshless methods, while many engineers seem to believe themselves to be
on solid ground once they have what they call consistency.
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Sometimes the notion of completeness is used in the sense of convergent
approximate polynomial reproduction, i.e., (12.2) holding for h → 0. In
particular, linear completeness often means convergent approximate repro-
duction of linear functions (Belytschko et al. 1996b). This is different from
the usual notion of completeness in mathematics, and it must be used with
extreme care, in particular when assuming that it implies convergent ap-
proximate reproduction of piecewise linear functions.

Guideline 12.9. Within meshless methods, the notions of consistency
and completeness should be used with caution.

Anyway, the polynomial reproduction property (12.2) appears in many
meshless methods. In fact, recent surveys (Li and Liu 2002, 2004, Fries
and Matthies 2004) of meshless methods focus entirely on methods with
exact polynomial reproduction. However, it must be stated clearly that
exact polynomial reproduction is not necessary for convergence, as is shown,
for example, by the rigorous convergence analysis of the generalized finite
element method (Babuška et al. 2003), and the symmetric (Franke and
Schaback 1998b) and unsymmetric (Schaback 2005b) meshless collocation
methods. Polynomial reproduction appears to be popular because it is
necessary in convergence arguments for stationary scales of trial functions,
using Strang–Fix conditions or the Bramble–Hilbert lemma. But it is not
mandatory to use these tools. By Theorem 7.8, optimal approximation
orders in Sobolev spaces are attained without it in very general situations,
not only for interpolation from nonstationary scales of kernel-based trial
spaces.

In view of these remarks, future work should remove exact polynomial
reproduction from the assumptions of many meshless methods. Instead,
care must be taken to conserve physical properties like mass and momentum
in applications. This is only loosely related to polynomial reproduction.

12.5. Particle methods

After this detour into polynomial reproduction we still have to look at a
class of methods that arrives at meshless trial spaces via a slightly differ-
ent approach. Smoothed particle hydrodynamics (SPH) use spatial kernel
approximations that we called discretized kernel convolutions in Section 7.
This means that a suitably scaled and normalized kernel K is chosen such
that (7.1) holds, and a discretization of the convolution integral implies

(K ∗ f)(x) ≈
∑
i∈I

wiK(x, xi)f(xi) for all x ∈ R
d

with integration weights wi at integration nodes xi. The linear unknowns
here are f(xi), while the points xi are interpreted as particle positions and
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can be considered as nonlinear parameters whose number and value can
change. The name of the technique is derived from the fact that the right-
hand side writes a function or vector field as a sum over the local kernel-
controlled influences of discrete particles at the points xi. Thus the logic
of SPH does not directly aim at trial spaces, but rather parametrizes fields
describing flows in the form (3.4) we had in the beginning, by using the
right-hand side of the above approximation. All other operations, e.g., set-
ting up momentum equations, are performed using the parametrized flow.
Since the background problems are time-dependent, the above spatial dis-
cretizations lead to large systems of ordinary differential equations, where
time discretization is another issue we do not address here.

To achieve a good approximation in the continuous convolution error
(7.1), Theorem 7.1 tells us that the kernel should reproduce low-order poly-
nomials well, but not necessarily exactly. If the integration scheme is exact
for low-order polynomials, and if the kernel convolution reproduces low-
order polynomials exactly, this implies the partition-of-unity property for
the trial functions wiK(·, xi), but there will be no exact reproduction of
higher-order polynomials. This problem can be removed by dropping the
philosophy of discretizing a convolution integral, and going radically over to
functions (12.1) with exact or approximate polynomial reproduction. This
is called the reproducing kernel particle method (RKPM), when the rest
of the SPH is maintained, i.e., when discretized systems are derived from
parametrized kernel-based field representations some way or other. We re-
fer the reader to a recent survey article (Li and Liu 2002) and a book (Li
and Liu 2004) on SPH and RKPM techniques, containing long lists of refer-
ences, and describing many variations induced by additional physical con-
straints. But remember that meshless methods based on stationary moving
least squares, reproducing kernels, or partitions of unity are in most cases
identical (Belytschko et al. 1996b), so that all variants have to be looked
at carefully.

12.6. Residuals, test functionals and functions

After considering the trial side, we should now focus on the test side. If
we assume that the trial side has somehow produced some trial function
which is a candidate for an approximate solution of the partial differential
equation and the boundary conditions, we want to conclude that this trial
function is close to the real solution. This is the job of the test side. In
contrast to Guideline 12.4, we have the following rule, since the test side
has to consider security.

Guideline 12.10. Space discretization is much more important on the
test side than on the trial side.
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But we postpone discretization on the test side for a while, noting that
the above guideline calls for unsymmetric methods we deal with later.

If we rewrite the differential equation and the boundary conditions as
differences L(u) − f = 0 which should be zero for the exact solution u, an
approximate solution ũ should make the residuals L(ũ)−f small everywhere.
Usually, to conclude that the error u − ũ is small, it suffices to make sure
that the residuals are small, because the solution of any well-posed linear
problem will be continuously dependent on the data, implying

ũ− u small, if all residuals L(ũ) − L(u) = L(ũ) − f are small,

where ‘all’ means residuals of differential equation(s) and boundary condi-
tion(s) altogether, as many as are present in the problem. This means that
‘testing’ should usually make sure that the residuals are zero or at least
small globally . Numerical techniques aiming at globally small residuals are
often called methods of weighted residuals.

Guideline 12.11. Globally small residuals imply small errors for well-
posed linear problems, i.e., if the solution is continuously dependent on the
data. But one must make sure that the notions of ‘well-posedness’ and
‘globally small’ are consistently defined.

In fact, if we pack differential equations and boundary conditions into one
single linear operator L : U → F , continuous dependence requires fixing
spaces U and F for the solution u and the data f of the problem L(u) = f
such that

‖u‖U ≤ C‖L(u)‖F (12.3)

holds, i.e., L has a continuous inverse taking the data into a solution having
these data. Then one must ensure that ‘globally small’ residuals for an
approximate solution ũ implies that the corresponding non-discrete norm
‖L(u)−L(ũ)‖F is also small, and vice versa. Thus, even when discretization
of residuals is not an issue, the choice of a residual norm is important.

This is closely connected to the distinction between strong and weak
problems. For strong problems, the residual norm is usually something like
the ‖ · ‖∞ norm, while weak problems will use ‘weaker’ norms such as ‖ · ‖2.
But in most cases small residuals in the ‖ ·‖∞ norm will also be small in the
‖ · ‖2 norm, so that, even if the ‖ · ‖2 norm is the correct one for continuous
dependence, users are safe if they minimize ‖ · ‖∞ instead, i.e., solving a
strong instead of a weak problem. This requires the trial space and the data
f to have enough smoothness for ‖L(ũ) − f‖∞ to be well defined, but this
is usually not a big problem in many applications.

Guideline 12.12. If trial functions and data are smooth enough, users
can often use a strong formulation even if a corresponding weak formulation
is known to be well posed.



Kernel techniques: From machine learning to meshless methods 613

12.7. Global residual minimization

There is a natural class of numerical methods related to weighted residuals,
i.e., methods that globally optimize residuals in the correct residual norm.
These will always lead to an optimization problem instead of a linear system,
reminding us of Guideline 3.18 and the complexity-reducing optimization
problems in Section 11 on machine learning. In the case of L2 residual
minimization, this is the well-known method of (continuous) least squares,
and there the optimization problem is quadratic, boiling down again to a
linear system of equations. With weak problems it shares the disadvantage
of requiring integration, while it has the additional disadvantage of working
with higher-order derivatives than weak techniques. It also requires addi-
tional regularity in excess of L2 to conclude that numerical integration of
residuals has a controllable error.

For L∞ residual minimization for problems in strong form, we get a semi-
infinite linear programming problem. Application-oriented users should
know that there are good numerical techniques for solving such problems.
Furthermore, Kuhn–Tucker conditions will help to reduce complexity, as
for learning algorithms via support vector machines, while adaptivity on
the test side is built in automatically. Thus there is some hope that linear
programming codes will be very helpful in the future when it comes to cal-
culate low-complexity solutions of partial differential equations by adaptive
methods.

For both cases of residual minimization, there is a trial function with
small residuals, if the true solution u has a good approximation ûr from the
trial space Ur. We avoid h here and prefer r, because trial spaces should not
be automatically connected to space discretizations with fill distance h as
in finite elements. The existence of ûr is a problem of approximation theory
which is dependent on the solution u, the trial space Ur, and the norm ‖·‖U

in the solution space U only, but not on any partial differential equation.
Thus the user should keep Guidelines 3.9, 12.4, and 12.5 in mind without
looking at the partial differential equation. Then the numerical method for
solving a PDE problem, in weak or strong form, just has to make sure not
to discard the existing unknown good approximation ûr, while it produces
another approximation ũr ∈ Ur based on PDE data which is not too much
worse. For residual minimization algorithms, this means that there exists
an admissible trial function yielding small residuals ‖L(u) − L(ûr)‖F , such
that the final optimal solution cannot have worse residuals. Error bounds
and convergence results will then follow the simple estimates

‖u− ũr‖U ≤ C‖L(u) − L(ũr)‖F

= C inf
v∈Ur

‖L(u) − L(v)‖F

≤ C‖L(u) − L(ûr)‖F ,



614 R. Schaback and H. Wendland

which is a well-known line of argument, known in finite elements as Cea’s
lemma.

Guideline 12.13. Residual minimization works if the problem is well
posed and if the trial space contains a good approximation to the solu-
tion. This allows plenty of freedom to design useful residual minimization
algorithms.

12.8. Discrete residual minimization

Because all residual-based techniques have to evaluate norms on the test
side, they have problems when dealing with global L2, L∞, or Sobolev
norms there. Therefore we now look at discretization on the test side. It
means that only finitely many ‘tests’ are performed. Discretization of a
strong problem means taking a finite subset of points where the differen-
tial equation or boundary conditions are satisfied. This is the standard
technique of collocation. For weak problems, discrete testing means taking
inner products of the residuals with finitely many test functions, and then
the residuals are not zero or small, but orthogonal to the test space spanned
by test functions. In both cases we have to make sure that small results of
discrete testing lead to small results in (theoretical) infinite testing.

Guideline 12.14. Coping with only finitely many conditions on the test
side is the most serious part of any error or convergence analysis for numer-
ical methods solving partial differential equations.

Such an analysis usually requires a stability condition relating the test
and the trial space, and making sure that a small discrete residual on the
trial space implies a small full residual on the trial space. We shall see
examples later, but we can already state at this point that there should be
no nonzero trial function ûr with vanishing test residuals, if we want to have
error bounds, because all functions ũr + α · ûr for arbitrary α ∈ R would
have the same discrete test residuals and spoil the error bound.

Guideline 12.15. The discretized residual norm on the test side should
at least work like a norm on the trial space.

This is the core of recent work (Schaback 2005b) on convergence analysis
of unsymmetric methods on which we will now focus.

12.9. Symmetric and unsymmetric methods

Following Guidelines 12.10 and 12.13, the test side will need more attention
than the trial side, and this leads us to the distinction between symmetric
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and unsymmetric methods. Symmetric methods use discretizations with

• the same degree of freedom on the trial and test side,
• closely related test functionals and trial functions,
• square and possibly positive definite matrices.

For weak problems, this means that trial and test functions coincide, and
usually the standard Galerkin method is employed, yielding a positive
definite square matrix. This applies to finite elements and several gener-
alizations, e.g., the GFEM (Babuška et al. 2003), described in detail in this
series. The GFEM is a meshless method which enlarges the admissible trial
spaces far beyond classical piecewise polynomial finite elements, but still
uses the basic symmetric Hilbert space formulation of the finite element
method. In its actual form, the GFEM uses stationary scales of trial spaces
spanned by a partition of unity. Since it is a symmetric Galerkin tech-
nique, the trial functions and the test functions coincide. Compactly sup-
ported kernels occur naturally in the partition of unity, but they need not be
positive definite. Since the current theory uses stationary approximations
(see Section 7) in its scales of local trial spaces, the only kernels providing
useful approximation orders are conditionally positive definite with infinite
support, like multiquadrics or thin-plate splines. When local trial spaces
are generated by moving least squares (see Section 7), weight kernels oc-
cur again. But most applications just augment finite element spaces by
useful additional trial functions, e.g., for treating singularities. However,
the overall axiomatic structure of the GFEM theory (Babuška et al. 2003)
suggests that it should be possible to extend the theory of the GFEM to
allow nonstationary scales of kernel-based trial spaces with high-approx-
imation orders.

For strong problems, the test side contains point evaluation functionals
and there are no test functions. But there is also a symmetric method
taking the trial functions as results when these functionals are applied to
one argument of a positive definite kernel. This establishes a close relation

λ↔ vλ := λxK(x, ·)
between test functionals λ and trial functions vλ which is only possible
because kernels are involved. We call this symmetric collocation and deal
with it in Section 14. It follows the lines of general recovery in Section 3,
leading to symmetric positive definite systems of the form (3.8).

Both kinds of symmetric methods can be rewritten as an approximation
or optimization problem in Hilbert space, and their theoretical foundation
strongly relies on this fact. This comes close to Guideline 3.18, because
the problem itself is a quadratic optimization problem solved via a linear
system.
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Let us now look at unsymmetric methods. In the strong case, collocation
(Kansa 1986) using nonstationary scales of trial spaces of radial basis func-
tions, in particular multiquadrics occurs in many applications we cannot
list here. Theoretical support was only given recently (Schaback 2005b),
proving high convergence rates depending on the regularity assumptions.
We provide more details in Section 14.

Unsymmetric methods for weak problems usually take the form of Petrov–
Galerkin schemes, where trial and test functions differ. Their basic theory
(Douglas, Dupont, Rachford and Wheeler 1977) was established for trial
spaces spanned by multivariate polynomial splines and for elliptic prob-
lems, making use of coercivity. More modern applications (Bialecki and
Fairweather 2001, Bialecki, Ganesh and Mustapha 2004) have the same
theoretical basis, but also do not apply kernel techniques.

A more radical approach to solving weak problems by an unsymmetric
Petrov–Galerkin technique is the meshless local Petrov–Galerkin (MLPG)
technique developed by S. N. Atluri and his collaborators (Atluri and Zhu
1998) with a short and recent survey (Atluri and Shen 2005) and two books
(Atluri and Shen 2002, Atluri 2005) reporting many successful applications.
It can use a variety of test and trial functions, and owing to its general
form it can claim to include formally many other methods, e.g., Kansa’s
unsymmetric collocation and various forms of symmetric methods, meshless
or not.

However, there is currently no general convergence proof or error estimate
available unless the method is restricted to well-known special cases. The
main obstacle for its analysis is the fact that it uses a practically very
valuable local weak form which, as opposed to weak forms arising in standard
or generalized finite element methods, cannot be written as a necessary
condition for a minimizing trial function in some Hilbert space of functions.
But the MLPG can be viewed as an unsymmetric technique which tries to
minimize residuals, and thus there are good chances to use Guideline 12.13
for underpinning it, extending techniques (Schaback 2005b) which currently
only handle the special case of strong testing.

12.10. Numerical integration

Let us finally return to numerical integration questions, and let us look at
weak problems first. The integrals for stiffness matrix entries within weak
problems usually contain products of test and trial functions or derivatives
thereof. To make integration easy and precise, test and trial functions have
to be chosen carefully and should be closely related. The standard choice of
piecewise polynomial trial and test functions in the finite element method
achieves this, since the integrals can be done exactly in the case of poly-
hedral domains, though one has to keep track of the polyhedra carefully.
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The integration of test functions against arbitrary functions is required for
the inhomogeneities, but this is an issue of the test side, not of the trial
side. Anyway, integrating piecewise polynomials on polyhedra needs some
domain triangulation first (the primary mesh), and then a careful choice
of interpolation nodes (or transformation to standard elements) for the in-
tegration (the integration mesh). Even ‘meshless’ methods, if they require
integration, may sometimes need an integration mesh and are subject to
influences of integration error, if they are applied to weak problems.

Using translates of radial kernels on both the trial and test side of weak
problems can be equally efficient as finite elements are, if the integration do-
mains do not interfere with boundaries, because the integrals are univariate
radial functions which are either analytically known or can be pretabulated.
Certain variations of the MLPG method could take advantage of this. In-
tegration of ‘test’ kernels against given functions may be simplified by first
representing the function in terms of translates of a ‘trial’ kernel, followed by
integrations of kernels against kernels, which again is easy if no boundaries
are in the way. In the presence of nontrivial boundaries, all trial and test
functions cause problems, unless the real boundary is replaced piecewise by
boundaries of supports of trial and test functions.

For problems in strong form, this discussion is not necessary. The trial
functions can be chosen freely to satisfy the first three properties of Guide-
line 12.3. These properties are independent of PDE solving. We shall take
a closer look at them, but from a more general point of view.

12.11. Classification of meshless methods

Summarizing, the universe of time-independent meshless methods can be
roughly split into four parts by the dichotomies between strong/weak and
symmetric/unsymmetric problems.

Strong problems imply collocation techniques as numerical methods, and
then there are the symmetric and unsymmetric meshless collocation meth-
ods we describe in Section 14. They have in common the use of nonstation-
ary scales of trial functions based on explicit kernels.

Weak problems in unsymmetric form are handled by Petrov–Galerkin
techniques or the more general MLPG method. Everything else falls into
the category of symmetric techniques solving weak problems. These come in
a big variety and mostly differ on the trial side, while one of their common
features is to rely on minimization in Hilbert space.

We have to leave out time-dependent meshless methods for space rea-
sons, but we want to point out that there are strange gaps in the above
scenario. First, for strong problems there are no investigations of methods
using stationary scales. Second, for weak problems there are no investiga-
tions of methods using nonstationary scales, though this should be possible
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using the partition-of-unity framework behind the generalized finite element
method. There is plenty of leeway for future research.

13. Special meshless kernel techniques

Following Guideline 6.1 and applying techniques of Section 6, kernel engi-
neering can provide kernels which are closely connected to standard differ-
ential equations. This is used by certain numerical methods to be described
in this section.

13.1. Dual reciprocity method

This misleading name stands for a technique coming from boundary ele-
ment methods (Nardini and Brebbia 1982, Partridge, Brebbia and Wrobel
1992) and proliferating by use of kernel techniques (Chen, Golberg and
Schaback 2003a). The basic idea is to split the problem into an inhomo-
geneous and a homogeneous subproblem with respect to the differential
equation. A problem L(u) = f with a linear differential operator L and
linear boundary conditions B(u) = g is treated first by constructing a par-
ticular solution uP with L(uP ) = f without regard of boundary values.
Then the homogeneous problem L(u) = 0 is solved by some function uH

under the boundary conditions B(u) = g − B(uP ) to get the final solution
as u := uP + uH .

The first problem uses trial spaces of known particular solutions. These
are easy to construct for kernel-based trial functions. The second prob-
lem makes use of a priori information on homogeneous solutions either via
integral equations or fundamental solutions, providing trial spaces of homo-
geneous solutions via a special kernel called the fundamental solution of the
differential operator L. Because of this close connection to kernels, we have
to treat this technique in some detail.

Guideline 13.1. The dual reciprocity method can be applied to well-
posed linear problems with well-known fundamental and particular solutions
which have good approximation properties.

13.2. Method of particular solutions

To find a particular solution uP with L(uP ) = f without regard to boundary
values, one can use trial functions ui whose images fi := L(ui) under L are
well known and numerically available. Then the right-hand side f of the
differential equation is approximated by a linear combination

f̃ :=
∑

i

αifi
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of the fi to some small error ‖f − f̃‖F in some suitable function space F ,
and the approximation

ũP :=
∑

i

αiui

is the canonical approximation to a particular solution uP . Note that this
part of the algorithm is an approximation problem which is completely in-
dependent of partial differential equations. After construction of f̃ we know
that the residual L(uP − ũP ) = f − f̃ is small, but we have to postpone a
thorough error analysis based on residual minimization and Guideline 12.13
until we have looked at the homogeneous problem and boundary conditions.

Of course, there are plenty of ways to produce good approximations f̃ to
f , provided that the approximation properties of the functions fi are well
known. But it is a problem to find functions fi which are particular solutions
and have good approximation properties. Starting from well-approximating
multivariate functions fi such as finite elements, it is often hard or impos-
sible to find the functions ui with L(ui) = fi. On the other hand, starting
with nice functions ui will only rarely lead to functions fi = L(ui) with
good approximation properties.

But things can be easy if kernels are used. The simplest way is to take a
smooth symmetric translation-invariant positive definite kernelK and define

ui := K(· − xi) and fi := LK(· − xi)

for trial centres xi. If the operator L is elliptic with constant coefficients, the
resulting kernel LK for the fi will be positive definite again, as inspection
of Fourier transforms shows. Now all techniques of Section 7 can be applied
to reconstruct f approximately using the trial functions fi.

If the operator is not elliptic, the kernel LK will not be positive definite.
In such cases, the reverse strategy can be helpful, starting with fi := K(· −
xi) using a positive definite kernel K and finding another kernel KL such
that L(KL) = K. This new kernel need not be positive definite, but since
it is not used for approximation, there is no problem here.

Guideline 13.2. A natural kernel-based strategy for the method of par-
ticular solutions is to have pairs ui, fi with fi = L(ui) = K(· − xi) such
that one can perform approximation of f by the standard translates of the
kernel K.

The literature contains many such pairs, and we can only cite a selection:
Chen and Rashed (1998), Chen, Muleshkov and Golberg (1999b), Cheng
(2000), Ramachandran and Balakrishnan (2000) and Golberg, Muleshkov,
Chen and Cheng (2003).
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13.3. Method of fundamental solutions

Once the problem L(u) = f with boundary data B(u) = g is transformed
into homogeneous form L(u) = 0, B(u) = g −B(ũP ) =: gH by the method
of particular solutions, the method of fundamental solutions (Mathon and
Johnston 1977, Fairweather and Karageorghis 1998) takes over. It uses
a special kernel F called the fundamental solution of L(u) = 0 such that
LF (·, x) = δx in the distributional sense. These kernels are well known for
a number of linear operators, and we presented those for the iterated Lapla-
cian in Section 6, i.e., the thin-plate spline of (6.1) and the polyharmonic
splines of (6.2). This can be generalized to linear elliptic differential op-
erators with constant coefficients, but we do not want to go into details
and refer the reader to the literature on Fourier methods in partial dif-
ferential equations (Hörmander 2003) and on special fundamental solutions
(Kythe 1996, Golberg and Chen 1999, Chen, Marcozzi and Choi 1999a, Bal-
akrishnan and Ramachandran 2000, Alves, Chen and Šarler 2002, Poul-
likkas, Karageorghis and Georgiou 2002, Hon and Wei 2004), where we
again picked out just a few cases from different application areas.

However, as we pointed out at the end of Section 6, the kernel F provid-
ing the fundamental solution will have a singularity ‘on the diagonal’, i.e.,
for F (x, x) or derivatives thereof. For second-order equations in dimension
2 or more, F itself is already singular, while for higher order we get singu-
larities in the derivatives of F . Singular kernels are not directly covered by
the standard theory of positive definite kernels, but they work fine in the
generalized sense of (6.5), avoiding point evaluation functionals.

Once a fundamental solution F is at hand, there are various ways to gen-
erate trial functions solving the homogeneous differential equation. Before
we describe these techniques, we want to look at the error and convergence
analysis. The trial functions are used for approximating the prescribed
boundary values gH on the boundary. If a numerical scheme comes up
with a trial function ũH satisfying L(ũH) = 0 and with a small residual
B(ũH) − gH = B(ũH) − B(u) + B(ũP ), we use ũ := ũH + ũP for our full
solution and residuals

‖L(ũ) − f‖F = ‖L(ũH + ũP ) − f‖F

= ‖L(ũP ) − f‖F

= ‖f̃ − f‖F ,

‖B(ũ) − g‖G = ‖B(ũH + ũP ) − g‖G

= ‖B(ũH) − gH‖G,

for a suitable norm on a space G where the boundary values live. If the
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problem is continuously dependent on the data in the sense that an a priori
inequality

‖u‖U ≤ C(‖L(u)‖F + ‖B(u)‖G) (13.1)

holds, and if the exact solution u exists and lies in U , then there is an error
bound

‖ũ− u‖U ≤ C(‖L(ũ− u)‖F + ‖B(ũ− u)‖G)

= C(‖L(ũ) − f‖F + ‖B(ũ) − g‖G)

= C(‖f̃ − f‖F + ‖B(ũH) − gH‖G),

reducing the overall error to the error of the residuals.

Guideline 13.3. The dual reciprocity method has a solid mathematical
foundation once continuous dependence holds and the residuals are small in
the correct norms.

This confirms Guidelines 13.2 and 12.13. For elliptic operators satisfying
a maximum principle, these error bounds can be improved, provided that
the spaces F and G are chosen appropriately.

However, it remains to prove that certain approximation schemes in the
methods of particular and fundamental solutions lead to small residuals
in the correct spaces needed for continuous dependence. If methods of
Section 7 based on positive definite kernels are applied within the method
of particular solutions, there are no serious problems, because there are
good error estimates like (7.12) in Sobolev spaces on bounded domains. We
are thus left with the analysis of the approximation power of the method of
fundamental solutions.

A particularly simple way to generate trial functions satisfying the ho-
mogeneous problem L(u) = 0 is to proceed as in Section 7 by taking linear
combinations of translates F (·, xi) of the fundamental solution. This is an
approximation problem

gH(t) ≈
∑

j

αjF (t, xj), t ∈ Γ (13.2)

to be posed on the boundary Γ of the domain. But in order to avoid
singularities of trial functions inside the domain or on the boundary, the
trial centres xi should be placed outside the domain. But then the theory
of Section 7 does not apply, because the approximation domain does not
contain the centres and there is no notion like a fill distance as in (7.6)
making sense. However, the references cited above support that this method
performs very well in practice if the outside centres are placed with care.
For very special domains and smooth boundary data the method can be
proven to have spectral convergence (Li 2005), but a general theory is still
missing.
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A well-known and much older approach is to place infinitely many trial
centres right on the boundary and to take a weighted sum over all such
translates of the fundamental solution. This leads to the singular single-
layer potential integral equation

gH(t) =
∫

Γ
α(x)F (t, x) dx, t ∈ Γ.

Note that this is a non-discrete form of (13.2). Owing to the singularities of
F , this equation cannot be solved strongly, but it can be solved weakly, e.g.,
via finite elements on the boundary. Such techniques are called boundary
element methods and have a rich literature including various books.

Variations of this approach are possible by replacing F (·, x) by certain
linear functionals acting on F (·, x) with respect to the second argument x.
These new kernels, like the normal derivative ∂F (·,x)

∂n will usually preserve the
property that action of L on the first argument results in zero. The standard
case is the integral equation of the double-layer potential , but there are
plenty of other possibilities that are yet unexploited, e.g., replacing F (t, x)
by local integrals around x of F (t, s) with respect to s in order to remove
the singularities. A special case of this is the recent boundary knot method
(Chen and Tanaka 2002, Chen 2002, Chen and Hon 2003).

13.4. Divergence-free kernels

In analogy to the methods of fundamental and particular solutions, there is a
trick (Narcowich and Ward 1994a, Lowitzsch 2005) to generate kernel-based
divergence-free trial spaces from smooth kernels, and curl-free trial spaces
are also possible. The general idea behind this is to employ matrix-valued
kernels, which allow us to incorporate these additional features into the rows
and/or columns of the matrix. From these matrix-valued kernels, vector-
valued interpolants can be built, which satisfy the additional constraints
analytically. Applications of such divergence-free kernels to Stokes, Navier–
Stokes, Euler and Maxwell equations are currently under investigation. We
see this as a further case of kernel engineering in the direction of partial
differential equations.

Unfortunately, we cannot describe more general applications of kernels to
transport problems, advection, and fluid dynamics here, but this is a very
promising research area (Mai-Duy and Tran-Cong 2001, Behrens and Iske
2002, Iske 2003, Barba, Leonard and Allen 2005, Shu, Ding and Yeo 2005).

14. Meshless collocation

Within the classification of meshless methods in Section 12, the techniques
of this section solve partial differential equations in strong form, using col-
location on the test side and avoiding numerical integration completely. On
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the trial side, they use nonstationary scales of explicit kernel-based trial
functions. They come in a symmetric and an unsymmetric form.

In both cases, a given partial differential equation L(u) = f and various
boundary conditions of the form B(u) = g are discretized by point evalu-
ations of both sides in certain collocation nodes. For instance, a Poisson
problem on a domain Ω with Dirichlet conditions u = gD on ΓD ⊆ Γ := ∂Ω
and Neumann conditions ∂u

∂n = gN on ΓN ⊂ Γ can be discretized by a set
Λ := {λ1, . . . , λN} of test functionals consisting of three parts:

Λ = Λ1 ∪ Λ2 ∪ Λ3

Λ1 := {λ1, . . . , λN1}
λj(u) := −∆u(xj), xj ∈ Ω, 1 ≤ j ≤ N1,

Λ2 := {λ1+N1 , . . . , λN2}
λj(u) := u(xj), xj ∈ ΓD, 1 +N1 ≤ j ≤ N2,

Λ3 := {λ1+N2 , . . . , λN3}
λj(u) := ∂u

∂n(xj), xj ∈ ΓN , 1 +N2 ≤ j ≤ N3 =: N.

If the evaluation points within the three sets Λ1, Λ2, Λ3 of functionals
are different, all linear test functionals in Λ = Λ1 ∪ Λ2 ∪ Λ3 are linearly
independent.

This specifies the test part of the problem for both the symmetric and
unsymmetric methods. In general, there may be several differential opera-
tors and several boundary conditions in any kind of mixture, provided that
everything is linear in u and the test functionals are linearly independent.
There is no numerical integration, no test functions, and up to now there are
no kernels. But for practical reasons, we mention the following guideline.

Guideline 14.1. To give certain test functionals special importance, one
should apply constant factors.

For example, boundary test functionals in two-dimensional Poisson prob-
lems should get a factor of about 1000 over the differential equation test
functionals. Exact rules for this are not known, but the background is pro-
vided by continuous dependence inequalities such as (13.1) where the parts
of the right-hand side should carry different weights.

14.1. Symmetric meshless collocation

The difference between symmetric and unsymmetric meshless collocation
shows up when looking at the trial side, provided that they use the same
testing strategy. For unsymmetric collocation, a standard nonstationary
scale of kernel-based trial spaces is used, where the translates K(·, yk) are
taken with trial nodes yk that are independent of the test functionals. This
method goes back to Kansa (1986) and will be analysed later.
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In the symmetric case, there must be a strong connection between trial
functions and test functionals. This is done by taking the trial functions
λx

jK(·, x), 1 ≤ j ≤ N for a sufficiently smooth kernel K guaranteeing
that all test functionals λ1, . . . , λN lie in the dual of its native space. This
is a special case of general Hermite–Birkhoff interpolation as described in
Section 3. Under mild additional assumptions, this leads to a symmetric
nonsingular linear system (3.8) and error bounds along the lines of Section 7.
A detailed theoretical analysis of symmetric collocation can be found in the
literature (Wu 1992, Iske 1995, Franke and Schaback 1998a, 1998b), while
reports on applications are somewhat scattered (Power and Barraco 2002,
Larsson and Fornberg 2003, Fasshauer 2004, Šarler 2005) and often limited
to small problems with regular solutions. For such cases, the method gives
quick and useful results, provided that the general guidelines on scaling in
Section 3 are observed. Future work should apply special techniques of
Section 8 for handling large-scale and ill-conditioned systems.

14.2. Unsymmetric meshless collocation

Unsymmetric meshless collocation is much more popular than the symmetric
case, because it is easier to handle and shows similarly good experimental
results (Cheng, Golberg, Kansa and Zammito 2003). The matrix entries
λx

i λ
y
jK(x, y) of the symmetric case apply all derivatives twice, while the

unsymmetric case with trial functions K(·, yk) involves only λx
iK(x, yk),

which is simpler to program. There is a huge number of papers on practical
applications of this technique which we cannot cite here, unfortunately, and
which would require a survey of its own. Some application areas with recent
sample papers are

• convection-diffusion problems (Li and Chen 2003, La Rocca, Hernan-
dez Rosales and Power 2005),

• ill-posed problems (Cheng and Cabral 2005),
• thermal analysis (Pepper and Šarler 2005),
• fluid dynamics (Šarler 2005),
• flows in porous media (Šarler, Perko and Chen 2004),
• viscous vortex flows (Barba et al. 2005),
• boundary-layer problems (Ling and Trummer 2004),
• transport problems (Lorentz, Narcowich and Ward 2003),
• free boundary value problems (Kovačevič, Poredoš and Šarler 2003),
• fracture problems (Lee and Yoon 2004),
• nonlinear problems in smart materials (Liu, Liew, Hon and Zhang

2005),
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but this list is far from complete. These papers, however, are recent enough
to enable readers starting in these areas to find older results and the applica-
tion-oriented background.

A thorough theoretical analysis was missing for about 20 years, because
the unsymmetric systems can in general be singular (Hon and Schaback
2001). However, if the method is changed along some of the guidelines
of this survey, error bounds and a convergence analysis can be supplied
(Schaback 2005b). We summarize the relevant issues as follows.

Guideline 14.2. The mathematical foundation of unsymmetric colloca-
tion requires four ingredients:

(a) a linear and well-posed PDE problem,

(b) a nonstationary scale of meshless trial spaces with good approxima-
tion properties and spanned by sufficiently smooth kernel translates
K(·, yk),

(c) a scale of test discretizations via sets of collocation functionals λi which
is fine enough to guarantee at least a full rank of the unsymmetric linear
systems with entries λx

iK(x, yk),

(d) an approximate solution of this linear system with small discrete resid-
uals.

Items (a)–(c) above are (in a more detailed and rigid form) sufficient
to guarantee approximate solvability in the final step. It can be imple-
mented by various techniques including linear or least-squares optimization
or greedy adaptive methods (Hon et al. 2003, Ling and Schaback 2004) de-
scribed below. Of course, guidelines of Section 7 concerning scaling must be
observed at all times. If the sup norm of residuals is minimized, the method
reduces to linear optimization, and it can be implemented via the revised
simplex method. By the Kuhn–Tucker theory, the final result will then be
based only on a small finite set of test functionals. This is a connection to
support vector machines.

14.3. Adaptive collocation solvers

In finite elements, there is a vast recent literature on adaptivity controlled
by efficient error estimation techniques. Meshless kernel-based collocation
methods can implement this in a very simple way by inspecting residu-
als of the differential equation and the boundary conditions. Since eval-
uations of trial functions are explicitly possible and very cheap, one can
always evaluate the residuals on a large set of background test points, using
only a few of these to define the test functionals entering the calculations.
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The general recipe is as follows.

1 Start with ũ being the zero trial function and set N := 0.
2 Iteration:

Assume that there is a trial function ũ which is a linear combination of
N trial functions u1, . . . , uN such that the N ×N system with entries
λj(uk) for N test functionals λ1, . . . , λN is non-singular and has ũ as
an approximate solution.

(a) Find a point in the domain or on the boundary where there is a
large or maximal residual. Stop if none can be found.

(b) Use this point to define a new test functional λN+1 for further
calculations.

(c) Add a new trial function uN+1 such that the enlarged system still
is nonsingular.

(d) Solve the new system approximately for a new trial function ũ.

If candidates for test functionals and trial functions are chosen from a large
reservoir satisfying the background theory for unsymmetric calculations as
described in Guideline 14.2, this is an adaptive bootstrapping technique that
automatically selects useful subsets of trial functions and test functionals
without ever forming a huge matrix defined by all possible trial functions
and test functionals. Connections to the notions of dictionaries in approx-
imation theory and to greedy algorithms are apparent.

This technique works fine for small problems (Hon et al. 2003, Ling and
Schaback 2004) but needs further theoretical and numerical research if N
gets large and the systems get ill-conditioned. In particular, step 2(c) of
the algorithm can be implemented in various ways, and it is not clear how
to assess the performance for small N . The symmetric case can also be
handled adaptively by omitting step 2(c), taking the new test point and the
corresponding functional to define a new trial function. There is a theo-
retical background for this symmetric greedy strategy in the interpolation
case (Schaback and Wendland 2000a), but a thorough analysis for general
collocation is an open problem, as is the incorporation of methods from
Section 8 dealing with large ill-conditioned systems.
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L. Schumaker, eds), Vanderbilt University Press, Nashville, TN, pp. 309–318.

R. Schaback (1999), Native Hilbert spaces for radial basis functions I, in New Devel-
opments in Approximation Theory (M. D. Buhmann, D. H. Mache, M. Felten
and M. W. Müller, eds), Vol. 132 of International Series of Numerical Math-
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