

# Copper-Catalyzed Dehydrogenative Diels-Alder Reaction

Bing Jiang,<sup>†,||</sup> Qiu-Ju Liang,<sup>†,||</sup> Yu Han,<sup>†</sup> Meng Zhao,<sup>†</sup> Yun-He Xu,<sup>\*,†®</sup> and Teck-Peng Loh<sup>\*,†,‡,§</sup>®

<sup>†</sup>Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

<sup>‡</sup>Institute of Advanced Synthesis, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, P. R. China

<sup>§</sup>Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

**Supporting Information** 

**ABSTRACT:** A practical and effective copper-catalyzed dehydrogenative Diels-Alder reaction of *gem*-diesters and ketone with dienes has been established. The active dienophiles were generated in situ via a radical-based dehydrogenation process, which reacted with a wide variety of dienes to afford various polysubstituted cyclohexene derivatives in good to excellent yields.

he Diels-Alder reaction is probably one of the most powerful reactions for the construction of six-membered rings.<sup>1</sup> Accordingly, it has been widely used for the synthesis of many natural products and pharmaceuticals.<sup>2</sup> Nevertheless, there are still limitations associated with this important reaction.<sup>3</sup> For example, there is still the need to prepare the highly reactive and toxic dienophiles before the reaction. Therefore, methods that can generate the reactive dienophiles in situ from easily accessible and more stable compounds in the reaction will be highly desirable. We envisage that dienophiles generated in situ via dehydrogenation of alkanes will be useful. It is important to note that dehydrogenation processes to yield alkenes have been documented by the groups of Stahl,<sup>4</sup> Dong,<sup>5</sup> Nicolaou,<sup>6</sup> Ishihara,<sup>7a</sup> Kuwano,<sup>8</sup> Huang,<sup>9</sup> Su,<sup>10</sup> White,<sup>11</sup> Nozaki,<sup>12</sup> Cheng,<sup>13</sup> Yu,<sup>14</sup> Newhouse,<sup>15</sup> and Kang.<sup>16</sup> On the other hand, Su and co-workers have elegantly utilized this process for the amine conjugate addition.<sup>10c</sup> Moreover, a few examples on dehydrogenative Diels-Alder reactions have emerged as unique protocols for the one-step construction of unsaturated six-membered carbocycles. One such case is via Pd, Pt/C-catalyzed, or oxidative dehydrogenation to generate reactive diene intermediates (Scheme 1), which was reported by White,<sup>11a</sup> Porco,<sup>17a</sup> Ishihara,<sup>7b</sup> Zhang,<sup>18</sup> and others.<sup>19</sup> Another example developed by Porco and co-workers is an Rh/C-catalyzed dehydrogenative reaction of cyclopentanone derivatives to form very reactive cyclopentadienone dienophiles.<sup>17b</sup> Therefore, we envision that a highly efficient gem-diester or ketone dehydrogenation process in combination with a subsequent Diels-Alder reaction would provide an appealing, atom-economic alternative to the traditional way by eliminating the need for troublesome pre-preparation and isolation of  $\alpha_{\beta}$ unsaturated carbonyl compounds. To realize this design, the catalytic system must conform to the following requirements: (a) the catalytic system selectively dehydrogenates gem-diester or ketone over a cyclohexene product to avoid overoxidation;







(b) the catalytic system selectively takes place prior to a Michael conjugate addition to overcome the byproduct from the dienophile precursor and TEMPOH; (c) the oxidative

 Received:
 April 5, 2018

 Published:
 May 23, 2018

dehydrogenation conditions are compatible with a Diels–Alder cyclization donor (an accessible electron-rich diene); and (d) the catalytic system is capable of facilitating both dehydrogenation and Diels–Alder reactions. With our continued interest in a Diels–Alder reaction to construct six-membered ring-containing frameworks efficiently,<sup>3q,20,21</sup> we hereby report a copper-catalyzed dehydrogenative Diels–Alder reaction that uses *gem*-diester or ketone as the direct dienophile through an acrylate or enone intermediate generated in situ.

First, we evaluated the model reaction with 2,3-dimethylbuta-1,3-diene and the dienophile precursor diethyl 2-methylmalonate, and the results are summarized in Table 1. Pleasingly, the

Table 1. Development of the Tandem Dehydrogenation/ Diels-Alder Reaction $^a$ 

| Me Cu(II) (10 mol %) Me CO <sub>2</sub> Et EtO <sub>2</sub> C CO <sub>2</sub> Et EtO <sub>2</sub> C CO <sub>2</sub> Et CO <sub>2</sub> E |                      |                   |                    |                   |               |                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|--------------------|-------------------|---------------|-----------------------------------------|
| Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ć h                  | TEMPO             | (x equiv) Me       | $\sim$            | -cc           | P <sub>2</sub> Et O                     |
| (0.3 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ol) (3.0 equ         | uiv) price        | 0.15 M)<br>°C 24 b |                   | Me            | TMP                                     |
| 2j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1a                   | all, 120          | 0, 24 11           | 3j                | 3j'           | 3j''                                    |
| entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | catalyst             | solvent           | ligand             | TEMPO (x equ      | uiv) atmosphe | ere yield <sup>b</sup> of <b>3j</b> (%) |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cu(OAc) <sub>2</sub> | PhCI              | L <sub>1</sub>     | 1.0               | Ar            | 65                                      |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cu(OAc) <sub>2</sub> | ODCB              | L <sub>1</sub>     | 1.0               | Ar            | 67                                      |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cu(OAc) <sub>2</sub> | toluene           | L <sub>1</sub>     | 1.0               | Ar            | 52                                      |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cu(OAc) <sub>2</sub> | PhCF <sub>3</sub> | L <sub>1</sub>     | 1.0               | Ar            | 71                                      |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cu(OAc) <sub>2</sub> | PhCI              | L <sub>1</sub>     | 1.2               | Ar            | 75                                      |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cu(OAc) <sub>2</sub> | PhCI              | L <sub>1</sub>     | 1.6               | Ar            | 82                                      |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cu(OAc) <sub>2</sub> | PhCI              | L <sub>1</sub>     | 1.8               | Ar            | 82                                      |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cu(OTf) <sub>2</sub> | PhCI              | L <sub>1</sub>     | 1.6               | Ar            | 48                                      |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CuCl <sub>2</sub>    | PhCI              | L <sub>1</sub>     | 1.6               | Ar            | 63                                      |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CuBr <sub>2</sub>    | PhCI              | L <sub>1</sub>     | 1.6               | Ar            | 69                                      |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cu(OAc) <sub>2</sub> | PhCI              | L <sub>2</sub>     | 1.6               | Ar            | 82                                      |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cu(OAc) <sub>2</sub> | PhCI              | L <sub>3</sub>     | 1.6               | Ar            | 83                                      |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cu(OAc) <sub>2</sub> | PhCI              | $L_4$              | 1.6               | Ar            | 85                                      |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cu(OAc) <sub>2</sub> | PhCF <sub>3</sub> | $L_4$              | 1.6               | air           | 93                                      |
| 15 <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cu(OAc) <sub>2</sub> | PhCF <sub>3</sub> | L <sub>4</sub>     | 1.6               | air           | 92                                      |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                    | PhCF <sub>3</sub> | $L_4$              | 1.6               | air           | nr                                      |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cu(OAc) <sub>2</sub> | PhCF <sub>3</sub> | $L_4$              | -                 | air           | nr                                      |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cu(OAc) <sub>2</sub> | PhCF <sub>3</sub> | -                  | 1.6               | air           | 52                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                   |                    | 'Bų               | 'Bu           | O<br>II                                 |
| $\langle \rangle_{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\sim$               | Me-               | - Me               | $\langle \rangle$ | $\sim$        |                                         |
| L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | L <sub>2</sub>    |                    | La                |               | La                                      |

<sup>*a*</sup>Reaction conditions: 2,3-dimethylbuta-1,3-diene 2j (0.3 mmol), diethyl 2-methylmalonate 1a (0.9 mmol),  $Cu(OAc)_2$  (0.03 mmol), L (0.03 mmol), TEMPO, solvent (2 mL), 24 h. <sup>*b*</sup>Yield was determined by <sup>1</sup>H NMR spectroscopic analysis using mesitylene as an internal standard. <sup>*c*</sup>Diethyl 2-methylmalonate (2.0 equiv) was used. ODCB: 1,2-dichlorobenzene. <sup>*d*</sup>3j' and 3j'' could be detected in less than 1% yield by crude <sup>1</sup>H NMR spectroscopic analysis.

dehydrogenative Diels-Alder reaction product 3j was obtained in a promising yield (65%) in the presence of 10 mol % of  $Cu(OAc)_2$  as catalyst and TEMPO (1.0 equiv) as oxidant in chlorobenzene (PhCl) at 120 °C being stirred for 24 h under argon atmosphere (Table 1, entry 1). Therefore, a series of solvents, catalysts, and ligands were examined sequentially. It was found that the yield of the product could be improved up to 93% by employing the  $Cu(OAc)_2/di(pyridin-2-yl)$ methanone catalytic system upon increasing the loading of TEMPO (1.6 equiv) in (trifluoromethyl)benzene (PhCF<sub>3</sub>) under air atmosphere (Table 1, entry 14). The dehydrogenation efficiency was not affected, even if we reduced the dienophile precursor to 2 equiv (Table 1, entry 15). Control experiments indicated that all components in this catalytic system were essential to afford the cyclohexene derivative 3j in an excellent yield.

After determining the optimized reaction conditions, we further investigated the substrate scope and limitation of dienes by employing diethyl 2-methylmalonate as dienophile precursor (Scheme 2). We found that a wide variety of readily available

#### Scheme 2. Substrate Scope of Dienes<sup>a</sup>



<sup>*a*</sup>Reaction conditions: **2** (0.3 mmol), diethyl 2-methylmalonate **1a** (0.6 mmol), Cu(OAc)<sub>2</sub> (0.03 mmol), L<sub>4</sub> (0.03 mmol), TEMPO (1.6 equiv), (trifluoromethyl)benzene (2 mL), air atmosphere, 24 h.

dienes with alkyl substituents tethering various functionalities at the C-2 and/or C-3 positions could provide the corresponding cyclohexene derivatives in moderate to excellent yields (3a-i). The dienes with reactive halide substituents, in particular, the iodide group, could also be tolerated in the reaction to give the corresponding products in moderate to excellent yields, respectively. Moreover, the volatile 2,3-dimethylbuta-1,3-diene also smoothly underwent cyclization reaction to generate the desired product 3j in 92% yield. We also observed that myrcene with an additional double bond could be well-tolerated, while a mixture product 3k/3k' in total 83% yield and with moderate regioselectivity (p/m = 84:16) was obtained. On the other hand, when the diene derived from irisone reacted with diethyl 2-methylmalonate, an exclusive isomer product 3l in 76% yield was isolated. Furthermore, other five-membered and sevenmembered dienes bearing nitro, acetyl, cyano, or Ts-protected amine groups were subjected to this transformation. All of the desired bridged products were obtained in moderate to high yields (3m-p). Subsequently, we also evaluated the dienes with respect to different aryl substituents (3q-ac). A variety of substrates with electronically diverse functionalities on the phenyl ring were tolerated to afford the corresponding products in 61-95% yields. It is worth mentioning that the dienes with an aryl group at the C-1 position showed highly reactive efficiency and excellent regioselectivities (3q,x-ac). Finally, a gram-scale dehydrogenative Diels-Alder reaction for the synthesis of cyclized product 3a was proven to be feasible in a slightly decreased yield.

To show the generality of this transformation, we next tested potential application of the current Cu(II)-catalyzed dehydrogenation Diels–Alder strategy to other *gem*-diesters and ketones (Scheme 3). We found that various readily available



<sup>*a*</sup>Reaction conditions: diethyl 3,4-dimethylenehexanedioate **2a** (0.3 mmol), **1** (0.6 mmol), Cu(OAc)<sub>2</sub> (0.03 mmol), L<sub>4</sub> (0.03 mmol), TEMPO (1.6 equiv), (trifluoromethyl)benzene (2 mL), air atmosphere, 24 h.

gem-diesters bearing primary or secondary alkyl substituents on the oxygen atom all provided the corresponding cyclohexene derivatives successfully. Despite some functionalities existing in the gem-diesters that were prone to being oxidized, the established oxidative conditions enabled these gem-diesters to participate in this transformation smoothly and afford the desired products in moderate to high yields (3ah-al). To access the enantioselective cyclohexene products, the use of chiral auxiliaries is one of many powerful and efficient strategies to produce the desired stereoisomer.<sup>22</sup> Herein, we attempted to introduce the chiral (-)-menthol to dienophile precursor in order to realize the stereoselective transformation. An excellent isolated yield of the desired products 3am could be observed with poor diastereoselectivity, most probably due to the need for high temperature. When a geraniol-derived gem-diester was subjected to this reaction, the corresponding product 3an with multiple double bonds was isolated in 69% yield. Additionally, the substrate bearing a phosphate group was also compatible and yielded the desired product 3ao. Moreover, this catalytic protocol is not only limited to gem-diesters but also applicable to a variety of ketones. The cyclic adducts were also obtained in good yields under the optimal reaction conditions (3ap-as). We noted that when 1-(3-nitrophenyl)propan-1-one was used to react with diethyl 3,4-dimethylenehexanedioate, a mixture of aromatization product and normal adduct could be obtained in 82% yield (3ar/3ar'). In addition, *gem*-diketone was also effective in affording the spiro product 3at in 68% yield. Subsequently, we used dimethyl 2-allylmalonate as the precursor via a dienoate intermediate, but unfortunately, only 16% yield of the desired product (3au) was obtained, possibly due to its low conversion of the starting materials under the optimized reaction conditions. Pleasingly, the corresponding tetrasubstituted cyclohexene derivatives were also formed in moderate to good yields when the ethane-1,1,2-tricarbonyl or 1,2-dicarbonyl compounds were applied to react with diethyl 3,4-dimethylenehexanedioat (3av-ay).

On the basis of the previous reports,<sup>10c,d</sup> a plausible mechanism was proposed as shown in Scheme 4. First,

#### Scheme 4. Proposed Possible Mechanism



Cu(OAc)<sub>2</sub> reacts with *gem*-diester to form an organocopper species **B** or a chelate copper—enolate complex **C**. Thus, a radical intermediate **D** could be generated via a homolysis process, along with formation of a Cu(I) complex. Following this, the radical intermediate **D** would be captured by TEMPO to form  $\alpha$ -TEMPO-substituted intermediate **E**, which then undergoes a fast TEMPOH elimination to furnish the dienophile **G** in the presence of another TEMPO (**F**). Finally, the  $\alpha,\beta$ -unsaturated carbonyl compounds generated in situ will react with various dienes under the Cu(II)/L<sub>4</sub> catalytic system to afford the cyclohexene derivatives **J** as well as a trace amount of undesired Michael addition byproducts **H** and **I**.

In conclusion, we have demonstrated a new strategy for a copper-catalyzed dehydrogenative Diels–Alder reaction of easily available *gem*-diesters and ketones with a wide variety of dienes. This strategy avoids the need of additional steps for the preparation of unstable  $\alpha,\beta$ -unsaturated carbonyl compounds. This work also opens a new method of constructing the cyclohexene derivatives in a highly efficient fashion. This work also features high efficiency in dehydrogenation, atomic economy, and good functional compatibility. Further in-depth application studies of this oxidative radical dehydrogenation Diels–Alder reaction in organic synthesis are underway in our laboratory.

#### ASSOCIATED CONTENT

#### Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.8b01067.

Detailed experimental procedures and spectral data (PDF) for all new compounds (<sup>1</sup>H NMR, <sup>13</sup>C NMR, <sup>19</sup>F NMR, <sup>1</sup>H–<sup>1</sup>H COSY NMR HR-MS) (PDF)

# AUTHOR INFORMATION

#### Corresponding Authors

\*E-mail: xyh0709@ustc.edu.cn. \*E-mail: teckpeng@ntu.edu.sg.

# ORCID ©

Yun-He Xu: 0000-0001-8817-0626 Teck-Peng Loh: 0000-0002-2936-337X

# **Author Contributions**

<sup>||</sup>B.J. and Q.-J.L. contributed equally to this work.

# Notes

The authors declare no competing financial interest.

## ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (21672198), the State Key Program of the National Natural Science Foundation of China (21432009), the State Key Laboratory of Elemento-Organic Chemistry Nankai University (201620), and the Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM).

## **REFERENCES**

(1) For selected reviews on Diels-Alder reactions, see: (a) Brieger, G.; Bennett, J. N. Chem. Rev. **1980**, 80, 63. (b) Kagan, H. B.; Riant, O. Chem. Rev. **1992**, 92, 1007. (c) Mehta, G.; Uma, R. Acc. Chem. Res. **2000**, 33, 278. (d) Jørgensen, K. A. Angew. Chem., Int. Ed. **2000**, 39, 3558. (e) Corey, E. J. Angew. Chem., Int. Ed. **2002**, 41, 1650. (f) Fringuelli, F., Taticchi, A., Eds. The Diels-Alder Reactions: Selected Practical Methods; J. Wiley & Sons Ltd.: Chichester, 2002. (g) Jiang, X.; Wang, R. Chem. Rev. **2013**, 113, 5515. (h) Li, J. L.; Liu, T. Y.; Chen, Y. C. Acc. Chem. Res. **2012**, 45, 1491.

(2) For recent reviews on the synthetic application of Diels-Alder reactions to natural products, see: (a) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668. (b) Stocking, E. M.; Williams, R. M. Angew. Chem., Int. Ed. 2003, 42, 3078. (c) Oikawa, H.; Tokiwano, T. Nat. Prod. Rep. 2004, 21, 321. (d) Takao, K.; Munakata, R.; Tadano, K. Chem. Rev. 2005, 105, 4779. (e) Juhl, M.; Tanner, D. Chem. Soc. Rev. 2009, 38, 2983. (f) Heravi, M. M.; Ahmadi, T.; Ghavidel, M.; Heidari, B.; Hamidi, H. RSC Adv. 2015, 5, 101999. (g) Han, J.; Jones, A. X.; Lei, X. Synthesis 2015, 47, 1519. (h) Mackay, E. G.; Sherburn, M. S. Synthesis 2015, 47, 1. (i) Heravi, M. M.; Vavsari, V. F. RSC Adv. 2015, 5, 50890. (j) Cao, M.-H.; Green, N. J.; Xu, S.-Z. Org. Biomol. Chem. 2017, 15, 3105.

(3) For selected examples of exo-selective Diels-Alder reactions, see: (a) Gouverneur, V. E.; Houk, K. N.; de Pascual-Teresa, B.; Beno, B.; Janda, K. D.; Lerner, R. A. Science 1993, 262, 204. (b) Maruoka, K.; Imoto, H.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 12115. (c) Yoon, T.; Danishefsky, S. J.; de Gala, S. Angew. Chem., Int. Ed. Engl. 1994, 33, 853. (d) Wright, M. W.; Smalley, T. L., Jr.; Welker, M. E.; Rheingold, A. L. J. Am. Chem. Soc. 1994, 116, 6777. (e) Kozmin, S. A.; Rawal, V. H. J. Org. Chem. 1997, 62, 5252. (f) Powers, T. S.; Jiang, W.; Su, J.; Wulff, W. D. J. Am. Chem. Soc. 1997, 119, 6438. (g) Barluenga, J.; Canteli, R.-M.; Flórez, J.; García-Granda, S.; Gutiérrez-Rodríguez, A.; Martín, E. J. Am. Chem. Soc. 1998, 120, 2514. (h) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243. (i) Ge, M.; Stoltz, B. M.; Corey, E. J. Org. Lett. 2000, 2, 1927. (j) Ishihara, K.; Nakano, K. J. Am. Chem. Soc. 2005, 127, 10504. (k) Sammis, G. M.; Flamme, E. M.; Xie, H.; Ho, HD. M.; Sorensen, E. J. J. Am. Chem. Soc. 2005, 127, 8612. (1) Qi, J.; Roush, W. R. Org. Lett. 2006, 8, 2795. (m) Gotoh, H.; Hayashi, Y. Org. Lett. 2007, 9, 2859.

(n) Lam, Y. H.; Cheong, P. H-Y.; Blasco Mata, J. M.; Stanway, S. J.; Gouverneur, V.; Houk, K. N. J. Am. Chem. Soc. 2009, 131, 1947.
(o) Hatano, M.; Mizuno, T.; Izumiseki, A.; Usami, R.; Asai, T.; Akakura, M.; Ishihara, K. Angew. Chem., Int. Ed. 2011, 50, 12189.
(p) Jia, Z. J.; Zhou, Q.; Zhou, Q. Q.; Chen, P. Q.; Chen, Y. C. Angew. Chem., Int. Ed. 2011, 50, 8638. (q) Zhou, J.-H.; Jiang, B.; Meng, F.-F.; Xu, Y.-H.; Loh, T.-P. Org. Lett. 2015, 17, 4432. (r) Liu, Z.; Lin, X.; Su, Z.; Hu, C.; Xiao, P.; He, Y.; Song, Z. J. Am. Chem. Soc. 2016, 138, 1877.

(4) (a) Izawa, Y.; Pun, D.; Stahl, S. S. Science 2011, 333, 209.
(b) Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 14566. (c) Diao, T.; Wadzinski, T. J.; Stahl, S. S. Chem. Sci. 2012, 3, 887. (d) Diao, T.; Pun, D.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 8205. (e) Pun, D.; Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 8213. (f) Hong, W. P.; Iosub, A. V.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 135, 13664. (g) Izawa, Y.; Zheng, C.; Stahl, S. S. Angew. Chem., Int. Ed. 2013, 52, 3672.

(5) (a) Huang, Z.; Dong, G. J. Am. Chem. Soc. 2013, 135, 17747.
(b) Huang, Z.; Sam, Q. P.; Dong, G. Chem. Sci. 2015, 6, 5491.
(c) Chen, M.; Dong, G. J. Am. Chem. Soc. 2017, 139, 7757.

(6) (a) Nicolaou, K. C.; Zhong, Y. L.; Baran, P. S. J. Am. Chem. Soc.
2000, 122, 7596. (b) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem., Int. Ed. 2002, 41, 993. (c) Nicolaou, K. C.; Gray, D. L. F.; Montagnon, T.; Harrison, S. T. Angew. Chem., Int. Ed. 2002, 41, 996. (d) Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y. L. J. Am. Chem. Soc. 2002, 124, 2245.

(7) (a) Uyanik, M.; Akakura, M.; Ishihara, K. J. J. Am. Chem. Soc. **2009**, 131, 251. (b) Uyanik, M.; Mutsuga, T.; Ishihara, K. Angew. Chem., Int. Ed. **2017**, 56, 3956.

(8) Ueno, S.; Shimizu, R.; Kuwano, R. Angew. Chem., Int. Ed. 2009, 48, 4543.

(9) (a) Gao, W.; He, Z.; Qian, Y.; Zhao, J.; Huang, Y. Chem. Sci. **2012**, *3*, 883. (b) Wang, Z.; He, Z.; Zhang, L.; Huang, Y. J. Am. Chem. Soc. **2018**, *140*, 735.

(10) (a) Zhou, J.; Wu, G.; Zhang, M.; Jie, X.; Su, W. Chem. - Eur. J.
2012, 18, 8032. (b) Shang, Y.; Jie, X.; Zhou, J.; Hu, P.; Huang, S.; Su, W. Angew. Chem., Int. Ed. 2013, 52, 1299. (c) Jie, X.; Shang, Y.; Zhang, X.; Su, W. J. Am. Chem. Soc. 2016, 138, 5623. (d) Shang, Y.; Jie, X.; Jonnada, K.; Zafar, S. N.; Su, W. Nat. Commun. 2017, 8, 2273.

(11) (a) Stang, E. M.; White, M. C. J. Am. Chem. Soc. 2011, 133, 14892. (b) Bigi, M. A.; White, M. C. J. Am. Chem. Soc. 2013, 135, 7831.

(12) Kusumoto, S.; Akiyama, M.; Nozaki, K. J. Am. Chem. Soc. 2013, 135, 18726.

(13) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. ACS Catal. 2014, 4, 4485.

(14) Deng, Y.; Gong, W.; He, J.; Yu, J.-Q. Angew. Chem., Int. Ed. 2014, 53, 6692.

(15) (a) Chen, Y.; Romaire, J. P.; Newhouse, T. R. J. Am. Chem. Soc. 2015, 137, 5875. (b) Chen, Y.; Turlik, A.; Newhouse, T. R. J. Am. Chem. Soc. 2016, 138, 1166. (c) Chen, Y.; Huang, D.; Zhao, Y.; Newhouse, T. R. Angew. Chem., Int. Ed. 2017, 56, 8258.

(16) Wang, M.-M.; Ning, X.-S.; Qu, J.-P.; Kang, Y.-B. ACS Catal. 2017, 7, 4000.

(17) (a) Qi, C.; Cong, H.; Cahill, K. J.; Müller, P.; Johnson, R. P.; Porco, J. A., Jr. Angew. Chem., Int. Ed. **2013**, 52, 8345. (b) Dong, S.; Qin, T.; Hamel, E.; Beutler, J. A.; Porco, J. A., Jr. J. Am. Chem. Soc. **2012**, 134, 19782.

(18) Zhou, L. J.; Xu, B.; Zhang, J. L. Angew. Chem., Int. Ed. 2015, 54, 9092.

(19) (a) Feng, H.-X.; Wang, Y.-Y.; Chen, J.; Zhou, L. Adv. Synth. Catal. 2015, 357, 940. (b) Kuo, C. W.; Konala, A.; Lin, L.; Chiang, T. T.; Huang, C. Y.; Yang, T. H.; Kavala, V.; Yao, C. F. Chem. Commun. 2016, 52, 7870. (c) Liu, T. X.; Ma, J. L.; Chao, D.; Zhang, P. L.; Ma, N. N.; Liu, Q. F.; Shi, L.; Zhang, Z. G.; Zhang, G. S. Org. Lett. 2016, 18, 4044. (d) Qin, G.; Wang, Y.; Huang, H. Org. Lett. 2017, 19, 6352.
(e) Manna, S.; Antonchick, A. P. Chem. - Eur. J. 2017, 23, 7825.
(f) Wu, X.; Zhu, H.-J.; Zhao, S.-B.; Chen, S.-S.; Luo, Y.-F.; Li, Y.-G. Org. Lett. 2018, 20, 32.

(20) For our continued interest in Diels-Alder reactions, see: (a) Loh, T.-P.; Wang, R. B.; Sim, K. Y. *Tetrahedron Lett.* **1996**, *37*, 2989. (b) Loh, T.-P.; Pei, J.; Lin, M. *Chem. Commun.* **1996**, 2315. (c) Loh, T.-P.; Koh, K. S.-V.; Sim, K.-Y.; Leong, W.-K. *Tetrahedron Lett.* **1999**, *40*, 8447. (d) Teo, Y.-C.; Loh, T.-P. *Org. Lett.* **2005**, *7*, 2539. (e) Fu, F.; Teo, Y.-C.; Loh, T.-P. *Org. Lett.* **2006**, *8*, 5999. (f) Shen, Z.-L.; Cheong, H.-L.; Lai, Y.-C.; Loo, W.-Y.; Loh, T.-P. *Green Chem.* **2012**, *14*, 2626. (g) Zhao, B.; Loh, T.-P. *Org. Lett.* **2013**, *15*, 2914. (h) Zhou, J.-H.; Cai, S.-H.; Xu, Y.-H.; Loh, T.-P. *Org. Lett.* **2016**, *18*, 2355.

(21) (a) Corey, E. J.; Loh, T.-P.; Roper, T. D.; Azimioara, M. D.; Noe, M. C. J. Am. Chem. Soc. **1992**, 114, 8290. (b) Corey, E. J.; Loh, T.-P. J. Am. Chem. Soc. **1991**, 113, 8966. (c) Corey, E. J.; Guzman-Perez, A.; Loh, T.-P. J. Am. Chem. Soc. **1994**, 116, 3611.

(22) (a) Seyden-Penne, J. Chiral Auxiliaries and Ligands in Asymmetric Synthesis; Wiley: New York, 1995. (b) Roos, G. H. P. Compendium of chiral auxiliary applications; Academic Press: London, 2001. (c) Boeckman, R. K., Jr., Ed. Comprehensive Chirality. Synthetic Methods II – Chiral Auxiliaries; Elsevier: Oxford, 2012; Vol.3. (d) Key Chiral Auxiliary Applications, 2nd ed.; Roos, G., Ed.; Academic Press: Boston, 2014. For selected reviews on chiral auxiliaries, see: (e) Gnas, Y.; Glorius, F. Synthesis 2006, 2006, 1899. (f) Heravi, M. M.; Zadsirjan, V.; Farajpour, B. RSC Adv. 2016, 6, 30498.