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The success of the supervised classification of remotely 
sensed images acquired over large geographical areas or 

at short time intervals strongly depends on the representa-
tivity of the samples used to train the classification algo-
rithm and to define the model. When training samples are 
collected from an image or a spatial region that is different 
from the one used for mapping, spectral shifts between the 
two distributions are likely to make the model fail. Such 
shifts are generally due to differences in acquisition and 

 atmospheric conditions or to changes in the nature of the 
object observed. To design classification methods that are 
robust to data set shifts, recent remote sensing literature has 
considered solutions based on domain adaptation (DA) 
 approaches. Inspired by machine-learning literature, several 
DA methods have been proposed to solve specific problems 
in remote sensing data classification. This  article provides a 
critical review of the recent advances in DA  approaches for 
remote sensing and presents an overview of DA methods 
divided into four categories: 1) invariant feature selection, 
2) representation matching, 3) adaptation of classifiers, and 
4) selective  sampling. We provide an  overview of recent 
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 methodologies,  examples of  applications of the considered 
techniques to real remote sensing images characterized by 
very high spatial and spectral resolution as well as possible 
guidelines for the selection of the method to use in real ap-
plication scenarios. 

Remote SenSing Facing new oppoRtunitieS 
With the advent of the new generation of satellite mis-
sions, which are often made up of constellations of satel-

lites with short revisit time 
and very high-resolution sen-
sors, the amount of remote 
sensing images available has 
increased significantly. Now-
adays, the monitoring of dy-
namic processes has become 
possible [1], [2], and biophy-
sical parameter estimation 
and classification problems 
can be addressed with the 
use of several data sources 
[3]–[6]. As a consequence, 
analysts have the opportuni-
ty to use multitemporal and 
multisource images for tasks 
such as repetitive  monitoring 
of the territory, change de-
tection, image mosaicking, 

and large-scale processing (i.e., processing involving many 
 image tiles) [7].

Remote sensing is therefore facing new opportuni-
ties. However, such opportunities cannot be seized un-
less they come with the capability to provide accurate 
products in a timely manner. A bottleneck of supervised 
image-processing-based pipelines is the need of training 
the model on reference points that are specific to every 
acquisition. To be accurate, most models need to be trained 
on the known samples coming from the image under study. 
Since obtaining new ground samples of high quality for 
each image acquisition is not realistic, to retrain or adapt an 

existing model without such ground 
samples becomes mandatory. Figure 1 
illustrates situations where  adaptive 
models might be of great use. In 
these situations (which correspond 
to those considered in this article), 
only one image, i.e., shown in red 
in the figure, has sufficient reference 
labels (e.g., obtained in an extensive 
ground campaign), whereas the oth-
ers have no labeled samples or have 
them only in an insufficient number. 
This setting is more realistic, since, 
on the one hand, extensive labeling 
cannot follow the pace of image ac-
quisitions, and, on the other hand, 

repetitive ground campaigns are simply not often an op-
tion, mainly for economic and manpower reasons. Indeed, 
gathering ground information is costly and cannot always 
be performed by photointerpretation. This is particularly 
true when the task concerns very large areas or considers 
quantities that cannot be photointerpreted by an analyst, 
such as chlorophyll concentrations [8], plant water stress 
[9], or tree species [10].

To address the cases described in Figure 1, a possible 
solution would be to bypass the problem and assume that 
the model that is already available is robust enough to 
process the new images accurately. Despite the fact that 
this is possible only in cases where the new image is ac-
quired by the same sensor as the previous one, it is well 
known that the direct application of a pretrained model 
on a new data set often provides poor results because 
the spectra observed in the new scene, even though rep-
resenting the same types of objects, are different from 
those of the scene used for training. The differences can 
be related to a series of deformations (or shifts) related to 
a variety of effects, such as a biased sampling in the spa-
tial domain (typically if the ground sampling has been 
focused on a region nonrepresentative of the new scene), 
changes in the acquisition conditions (including the il-
lumination or acquisition angle), or seasonal changes. 
When the new data are acquired by a different sensor, the 
strategy explained previously is simply not applicable, as 
most models require that all images (or domains) provide 
samples of the same dimensionality (and where each di-
mension has the same meaning) at test time. In this case, 
fusion strategies exist but generally only apply to certain 
combinations of sensors, and they only use the bands 
that these sensors have in common or that are reason-
ably similar [3], which prevents reusing the models that 
are already trained on the first image of the region that 
becomes available (which can be crucial, for example, in 
postcatastrophe interventions) and exploiting sensors’ 
synergies in multisensorial schemes.

To process remote sensing images efficiently and accu-
rately, modern processing systems must be designed to be 

Model Extension on
Wide Surfaces

Mosaicking Model Extension on Wide
and Asynchronous Scenes

FiguRe 1. Examples of cases where DA is necessary to extend a model to new image acquisi-
tions. In all three cases, the images can be from different sensors, but only the images in red 
have extensive reference labels (i.e., can be used for training an accurate supervised model). 
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robust in the face of changes in acquisition conditions and 
temporal shifts and, ideally, to be adaptive to sensor dif-
ferences. The need for adapting existing models has been 
acknowledged for many years, as shown by the signature 
extension community [11], [12], but the change in the 
amount and nature of data (as well as their resolution) cre-
ated the need for a new research direction. In this article, we 
advocate that the solution can be found in DA strategies, a 
field that is deeply rooted in statistical and machine learn-
ing [13], [14].

In general, DA aims to adapt models trained to solve a 
specific task to a new, yet related, task, for which the knowl-
edge of the initial model is sufficient, although not perfect. 
As a traditional example in computer vision, DA methods 
have been deployed to take classifiers that recognize ob-
jects in pictures from commercial websites and adapt them 
to the recognition of objects photographed by simple web 
cameras [15]. In this example, the classifier is presented a 
problem with the same objective (i.e., classifying pictures 
into a limited set of object classes) and the same features 
but where the data relations are slightly different. For ex-
ample, at Amazon.com the pictures have no background 
and the object is mostly in the center of the image, while 
this is not the case in webcam images. DA is therefore used 
to adapt the classifier that is accurate on Amazon.com to 
the new data distribution. Of course, this is just one ex-
ample. In the DA literature, models are modified to adapt 
to new data spaces (multimodal), related tasks (multitask), 
or subtle changes in probability distributions (see a recent 
review in [16]). The connections to the multitemporal, 
multisensor, and multiresolution image classification tasks 
discussed previously are strong [7].

The aim of this review article is to provide an introduc-
tion to the DA field and to provide examples of applications 
of DA techniques in remote sensing. With this in mind, we 
draw a taxonomy of the DA strategies that have been pro-
posed in recent remote sensing literature and discuss their 
strengths and weaknesses. We also provide a series of prac-
tical examples about the use of DA in high- to very high-
resolution image-processing tasks. However, we will not 
enter into the technical details of specific DA literature; for 
interested readers, we refer to the recent surveys published 
in [13], [14], [16], and [17].

tRanSFeR LeaRning anD Domain aDaptation
Transfer-learning problems arise when inferences have to 
be made on processes that are not stationary over time or 
space. As previously discussed, this is the case in the anal-
ysis of remote sensing images where different acquisitions 
are typically subject to different conditions (e.g., illumi-
nation, viewing angle, soil moisture, and topography). 
Such differences can affect the observed spectral signa-
tures of the land-cover types and, therefore, the distribu-
tion of the information classes in the feature space [18]. 
Different transfer-learning problems (and the techniques 
to tackle them) have been considered in the literature, 

including DA, multitask learning, domain generaliza-
tion, sample selection bias, and covariate shift [14]. In 
this article, we will focus on DA, which is a particular 
form of transfer learning.

Let us consider two domains, called source domain and 
target domain, that are associated with two images ac-
quired on different geographical areas (but with similar 
land-cover characteristics) or on the same area at differ-
ent time instants. Figure 2 shows the DA problem in the 
context of remote sensing image classification. The source 
and target domains are associated with the joint probabil-
ity distributions ( , )P X Ys  and ( , ),P X Yt  respectively. The 
two joint probabilities define 
the classification problems 
on the two domains, where 
X  is the input (vector) vari-
able (i.e., spectral bands of 
the source image with pos-
sible additional features used 
to characterize the contex-
tual information of the single 
pixel) and Y  is the output 
variable associated with a set 
of classes (i.e., land-cover or 
land-use information). The aim of DA methods is to adapt a 
classifier trained on the source domain to make predictions 
on the target domain.

Supervised DA assumes that labeled samples are availa ble 
for both domains. The labeled sets x x{( , ), ,( , )}T y ys

n n1 1 f=  
and x x{( , ), ,( , )}T y yt

m m1 1 f=  are the source- and target-
domain training sets, respectively. Supervised DA meth-
ods focus on challenging situations where labeled target-
domain samples are less numerous than those available in 
the source domain (i.e., ) .m n11  In such conditions, the 
proper use of source-domain information is very important 
in solving the target problem. Most of the work in DA as-
sumes that source and target domains share the same set 

Source Image Target Image

DA

Ps(X,Y ) = Ps(X )Ps(Y |X ) P t(X,Y ) = P t(X )P t(Y |X )≠

FiguRe 2. A graphical representation of the DA problem in the 
context of remote sensing image classification. Source and target 
images can be acquired on different geographical areas (but with 
similar land-cover characteristics) or on the same area at different 
times. The two images are associated with two different joint dis-
tributions, which characterize the two classification problems. The 
two distributions can differ due to different acquisition conditions 
(e.g., illumination, viewing angle, soil moisture, and topography). 
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of classes. There are only a few papers that address DA con-
sidering differences in the set of classes between source and 
target [19]–[22].

Semisupervised DA methods assume that a training set 
is available only for the source domain, whereas target-do-
main information is limited to a set of unlabeled samples 

x x{ , , }.Ut
m1 f=  This DA setting is more challenging than 

the supervised case and requires important assumptions on 
the relationship between source and target domains to make 
the algorithm converge to a consistent solution on the target 
domain. All DA methods are based on the assumption that 

( , )P X Ys  and ( , )P X Yt  are different but close enough to en-
sure that the source-domain 
information can be of help 
for solving the target-domain 
learning problem. On the one 
hand, if the source and target 
domain are arbitrarily differ-
ent, there is no hope that the 
source-domain information 
will provide an advantage in 
solving the task in the target 
domain. On the other hand, 
if ( , ) ( , ),P X Y P X Ys t=  no ad-
aptation is necessary, and the 
model trained on the source 
can be readily applied to the 

target. Semisupervised DA methods are effective in situa-
tions that lie in between these two extreme cases.

Unsupervised DA methods are the last family, and they 
assume that two unlabeled domains have to be matched. 
This is the most difficult case because label information is 
not available for any domain. In this situation, DA methods 
aim to match the marginal distributions of the two domains 

( )P Xs  and ( )P Xt  without knowledge on the learning task 
(classification or regression). Unsupervised methods can be 
used as preprocessing of any analysis task (e.g., clustering or 
density estimation), but they imperatively need to have data 
sets with similar structural properties before adaptation. 
Unsupervised DA models are generally feature extractors or 
matching algorithms that exploit the geometrical structure 
of the data.

Problems related to DA are the sample selection bias 
and covariate shift [23]–[25]. The sample selection bias 
originates when the available training samples are not in-
dependently and randomly selected from the underlying 
distribution (i.e., the training set is not a random sample 
of the population). This situation is very likely to occur in 
remote sensing problems where training points are usually 
selected and labeled through photointerpretation or field 
surveys. The covariate shift is a particular case of sample se-
lection bias where the bias depends only on the input vari-
able X  (and not on .)Y  Different operational conditions 
that result in biased training samples are discussed in [26]. 
Clearly, a training set x x{( , ), ,( , )}T y yn n1 1 f=  obtained un-
der a  sample selection bias leads to skewed estimation of 
the true underlying distribution of the classes, resulting in 
an estimated ( , ) ( , ) .P X Y P X Y!t  For this reason, the effect 
of a sample selection bias is similar to the DA problem de-
scribed previously. The covariate shift problem is generally 
not as severe as the general sample selection bias and the 
DA problem. Let us consider that both training sets on the 
source and target are samples with bias (a bias depending on 
X only, i.e., covariate shift) from the same joint distribution. 
The joint probabilities on the two domains can be factorized 
as ( , ) ( ) ( | )P X Y P X P Y Xs s s=  and ( , ) ( ) ( | ) .P X Y P X P Y Xt t t=  
In this particular case of covariate shift, the estimated con-
ditional probabilities will be approximately equal, while 
the marginal distributions will generally be different, i.e., 

( | ) ( | )P Y X P Y Xs t.t t  and ( ) ( ) .P X P Xs t!t t

Figure 3 illustrates the two different issues of DA 
and the sample selection bias with two explanatory ex-
amples. The plots report the distributions of the labeled 
samples from two domains in a bidimensional feature 
space. A four-class classification problem is considered. 
In the case of DA, the class-conditional densities may 
change from the source to the target domain, possibly 
resulting in a significantly different classification prob-
lem. Note that the distribution of the classes in the target 
domain may overlap with different classes on the source 
domain (see the green circle in the target domain that 
represents the location of the green class in the source). 
In this  situation, training samples of the source domain 
can be misleading for the classification of the target 
domain [27], [28]. In the  case of sample selection bias, 

Source Domain

DA

Sample
Selection Bias

Target Domain

FiguRe 3. Explanatory examples of DA and sample selection bias 
problems. The plots represent labeled samples in a bidimensional 
feature space on the source and target domain. A four-class  
classification problem is considered. In the case of DA, the class-
conditional densities may vary from the source domain to the target 
domain, resulting in a significantly different classification problem 
(the green circles correspond to the location of the green classes 
in the source domain). In the case of sample selection bias, the 
aforementioned issue will not occur, resulting in a milder type of shift 
from the source domain.
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source- and target-domain samples are drawn (with bias) 
from the same underlying distribution, generally resulting 
in a milder type of shift with respect to DA. (The problem 
of cross-domain class overlap is not likely to occur in sam-
ple selection bias problems.)

In real remote sensing problems, it is expected that the 
two aforementioned issues may occur at the same time 
and can be profoundly entangled, meaning that 1) the two 
theoretical underlying distributions ( , )P X Ys  and ( , )P X Yt  
associated with the source and target domains, respec-
tively, may differ because of changes in the image acquisi-
tion conditions (e.g., radiometric conditions), and 2) the 
available training samples could be not fully representative 
of the statistical populations in their respective domains 
and will, therefore, lead to biased estimations of the class 
probabilities and to inaccurate classification models. In 
the remote sensing literature, several techniques have been 
presented to solve the transfer-learning problem irrespec-
tive of the cause of the data set shift between source and 
target domains. The next section will present the different 
families of techniques that have been proposed in remote 
sensing image processing.

a taXonomY oF aDaptation metHoDS
Adapting a model trained on one image to another (or a 
series of new images) can be performed in different ways. 
In this section, we detail recent approaches proposed in 
the remote sensing literature by grouping them into the 
following four categories:

 ◗ The selection of invariant features: A set of the input 
features (i.e., the original bands or additional features 
extracted from the remote sensing image) that are not 
affected by shifting factors are identified and selected 
before training the classification algorithm. According-
ly, the features affected by the most severe data set shift 
are removed, and the classifier considers a feature space 
showing higher stability across domains. An alternative 
approach is to encode invariance by including additional 
synthetic labeled samples in the training set to extract 
features that better model the intraclass variability across 
the domains.

 ◗ The adaptation of the data distributions: The data 
distributions of the target and source domains are 
made as similar as possible to keep the classifier un-
changed. With respect to the previous family, these 
methods work on the original input spaces and try 
to extract a common space where all domains can be 
treated equally. This is generally achieved by means of 
joint feature extraction.

 ◗ The adaptation of the classifier: Here, the classifica-
tion model defined by training on the source domain is 
adapted to the target domain by considering unlabeled 
samples of the target domain. In this case, the data 
distributions remain unchanged, and the classifier is 
adapted to the target data distribution using strategies 
based on semisupervised learning.

 ◗ The adaptation of the classifier by active learning 
(AL): This adaptation is performed by providing a lim-
ited amount of well-chosen labeled samples from the 
target domain. This is a special case of the previous fam-
ily, where we allow some new labeled examples to be 
sampled in the target domain to retrain the model itera-
tively. Due to their acquisition cost, these samples need 
to be selected well, according to their potential to lead 
the model toward the desired target classifier.
The rest of this section details recent advances in these 

four families. We will limit the discussion to approaches 
specific to the remote sensing literature and invite the in-
terested reader to consult the specialized machine-learning 
and computer vision literature in [13], [14], and [16].

SELECTING INVARIANT FEATURES
The first family of DA methods is based on the selec-
tion of invariant features that are usually a subset of 
the original set of features that are the most robust in  
the face of changes from the source to the target do-
main. The main idea of the approach is to select features 
to reduce the difference between ( , )P X Ys  and ( , ) .P X Yt  An 
alternative strategy for encoding the invariance is based on 
the inclusion of additional synthetic labeled samples in 
the training set, a procedure 
known in machine learning 
as data augmentation. A meth-
od adopting this strategy was 
studied in [29], where sam-
ple-selection bias problems 
are addressed by enriching 
the training set with artificial 
examples that correspond to 
physically consistent varia-
tions of the training samples 
(e.g., illumination, size, and 
rotation). To limit the num-
ber of additional examples to be used by the support vector 
machine (SVM), variations are generated only for the train-
ing samples considered as support vectors by the classifier 
trained on the source domain only. 

Let us consider the first strategy and focus on the analy-
sis of hyperspectral images as an application of particular 
interest. Hyperspectral sensors are capable of capturing 
hundreds of narrow spectral bands from a wide range of 
the electromagnetic spectrum, which is why they are par-
ticularly sensitive to subtle changes in image-acquisition 
conditions, leading to a nonstationary behavior of the spec-
tral signature of the classes and, therefore, to problems that 
should be solved by transfer learning and DA approaches. 
Figure 4 shows an example of a shift in the signature of a 
 hyperspectral image acquired by the Hyperion sensor over 
two areas of the Okavango Delta in Botswana.

In [30], the authors propose an approach for selecting 
subsets of features that are both discriminative of the land-
cover classes and invariant between the source and the target 
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domain. The main idea of this 
approach is to explicitly con-
sider two distinct terms in the 
criterion function for evaluat-
ing both the discrimination 
capability D  of the feature 
subset and the data set shift 
P  of the features between the 
source and target domain. The 
first term is standard in filter 
methods for feature selection 
and provides high scores when 
the features selected show 
some kind of dependency with 
the desired output (e.g., the 
classes to be predicted). The 

second term has been introduced to evaluate the invariance 
of the feature subset between the two domains. The subset of 
features F  is selected by jointly optimizing the two terms D  
and ,P  i.e., by solving the following multiobjective optimiza-
tion problem:

 ( ( ), ( )),argmin F P F
| |F l

D-
=

 (1)

where l  is the size of the feature subset. Both D  and P  
are treated as functions of the subset of considered fea-
tures .F  The specific definitions of the terms D  and P  
are reported in [30], considering their parametric esti-
mation (assuming Gaussian distribution of the classes) 
in both the supervised and semisupervised DA settings. 
In [31], the two terms are defined considering kernel-
based dependence estimators and kernel embedding of 
conditional distributions, resulting in a nonparamet-
ric approach that does not require the estimation of the 
class distributions as an intermediate step. Equation (1) 
is solved by adopting a genetic multiobjective optimiza-
tion algorithm. The solution results in features with high 
capability to discriminate classes (with a small value of 

)D-  and high stability on the two domains (with a small 
data set shift ) .P  Adopting a multiobjective optimization 
approach instead of considering a linear combination of 
the two terms frees the user from specifying in advance 
the relative importance of the two terms D  and .P  The 
solution of the multiobjective problem allows one to find 
the solutions that represent the best tradeoffs of discrimi-
native and stable feature subsets for the specific transfer-
learning problem at hand.
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FiguRe 4. (a) A false color composition of a portion of the hyperspectral data set. (b) The mean spectral signature of the classes on the 
source domain. (c) The mean spectral signature of the classes on the target domain. 
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In the following, we report the experimental results ob-
tained on a hyperspectral image acquired by the Hyperion 
sensor of the Earth Observation 1 satellite in an area of the 
Okavango Delta, Botswana [32] (see Figure 4). For more in-
formation about the experimental setting and the obtained 
results, see [30]. The labeled reference samples were col-
lected on two spatially disjoint areas with slightly different 
characteristics, thus representing two different domains. 
The samples taken on the first area, which was considered 
as the source domain, were partitioned into a training set 
Ts  and a test set T s  by random sampling. Samples taken on 
the second area (i.e., the target domain) were used to derive 
a training set Tt  and test set T t  according to the same pro-
cedure. The estimated Pareto front for the selection of six 
features is reported in Figure 5. 

Each point on the two graphs corresponds to a different 
selected feature subset F, i.e, a feature set minimizing (1). 
In Figure 5(a), the color of the points indicates the overall 
accuracy (OA) obtained on the source-domain test set T s  
using an SVM classifier trained using Ts  (according to the 
reported color scale bar). In Figure 5(b), the color indicates 
the OA obtained by the same SVM classifier on the target-
domain test set .T t  

The results show that the solutions with higher relevance 
D  result in better classification accuracies on the source do-
main. However, relevance alone is not sufficient for select-
ing features that are stable for the classification on the target 
domain. We observe that the most accurate solutions on the 
target domain T t  are those that exhibit a good tradeoff be-
tween the relevance and invariance terms, which confirms 
the importance of the invariance term and shows that the 
P  measure is able to capture the information of feature 
stability. To select the subset of features that leads to good 
generalization capabilities on different domains, tradeoff  
solutions between the two competing objectives should be 
identified. The selected subset of features results in an OA 
of 91% on the source domain and 80.7% on the target. The 
set of features selected according to the optimization of D  
results in an OA of 92.7% on the source but only 64.4% on 

the target, showing that the features selected by accounting 
for the data set shift between the domains can significantly 
improve the generalization capability on the target domain.

ADAPTING DATA DISTRIBUTIONS
The second family reviewed considers DA methods that 
aim to adapt the representation of the original data, regard-
less of the model that will process them afterward. A review 
of the methods proposed in computer vision and machine 
learning can be found in [16]. Here, we will focus on the ap-
proaches proposed in the remote sensing literature. This type 
of adaptation is often done by relative normalization methods, 
i.e., methods that do not provide physical units as an  output 
but that instead provide similarly distributed digital numbers. 
Their aim is to make the data 
distri butions more similar 
across the domains to train a 
single model that can simul-
taneously  classify the source 
and target domains.

In general, a data represen-
tation transformation with the 
aim of making data sources 
more similar should have the 
following desirable properties:

 ◗ The method should be able 
to align unpaired data (see 
the “Unpaired” column in Table 1), which allows the 
alignment of noncoregistered data (not even imaging the 
same location) or data with different spatial resolutions.

 ◗ The method should be able to align data of different dimen-
sionality (see the “D Dimensionality” column in Table 1) to 
allow multisource classification. 

 ◗ The method should be able to align several domains at 
the same time (see the “Multisource” column in Table 1) 
to enhance multitemporal adaptation instead of pair-
wise adaptation.

 ◗ The method should be able to align in a nonlinear 
way (see the “Nonlinear” column in Table 1), since the 
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 transformation between domains can be nonlinear be-
cause of atmospheric or illumination effects.

 ◗ The method should be able to use labeled information 
from the source domain when available (see the “Labels 
in s” column in Table 1). A discriminative transform tends 
to align the data sets better because it aligns the data ac-
cording to the semantic classes required by the user.

 ◗ The method should avoid being forced to use labeled 
information in all domains (see the “No labels in t” 
column in Table 1), as labels might not be available in 
all domains or their acquisition might have a high cost, 
typically through terrestrial campaigns (see the “Adap-
tation of the Classifier by Active Learning” section).

Several methods have been proposed in recent remote 
sensing literature. We provide a brief review in this sec-
tion and a summary in Table 1. Depending on the specific 
situation, the analyst can use this table to select the most 
suitable  approach.

Most of the recent literature focuses on feature-extrac-
tion strategies, where the extracted features align the data 
spaces with each other. In that space, the same classifier 
(or regressor) can be applied to all the domains. Beyond 
the works dealing with traditional or multidimensional 
histogram matching [33] or data alignment with principal 
component analysis (PCA) or kernel PCA (KPCA) [34], 
the authors of [35] propose to minimize the statistical 
distance between domains, which is assessed through a 
kernel-based dependence estimator, the maximum mean 
discrepancy (MMD) [18]. Other studies still focus on fea-
ture extraction, but based on multiview models. In [36], 
Nielsen aligns domains with canonical correlation analy-
sis (CCA) and performs change detection therein. The ap-
proach is extended to a kernel and semisupervised version 
in [37], where the authors perform change detection with 
different sensors. In [38], the domains are matched in a la-
tent space defined through an eigenproblem aiming at pre-
serving label (dis)similarities and the geometric structure 
of the single manifolds. A nonlinear (kernelized) version 

of the algorithm is proposed in [39], where the approach 
is particularly appealing because it can align an arbitrary 
number of domains of different dimensionality, as do CCA 
and kernel CCA (KCCA), but without requiring paired 
examples. However, it has the disadvantage of requiring 
labeled samples in all domains. 

In [40], the authors relax this requirement by working 
on semantic ties, i.e., samples issued from the same object 
but whose class is unknown. This last method therefore 
requires at least a partial overlap between the images to 
find the ties, either manually or by stereo matching, as in 
[41]. The authors in [42] regularize the manifold alignment 
(MA) solution with spatial information, leading to a more 
stable feature representation transfer. In [43], they propose 
a multiscale approach, considering the preservation of 
both local and global geometric characteristics and relying 
on clustering pairs rather than labeled correspondences. 

Other recent methods rely on eigendecompositions, 
such as those proposed in [44] and [45]. In [44], two PCA 
eigensystems (i.e., one for the source domain and another 
for the target domain) are aligned by minimizing their di-
vergence. In [45], the authors consider a sparse represen-
tation approach where they reduce the difference between 
domains again by minimizing the MMD. In both [44] 
and [45], the authors aim to transfer category models that 
are learned on landscape views to aerial views from very 
high-resolution remote sensing images. In [46], the authors 
propose a set of techniques based on sample reweighing 
and transformation to address different DA situations. The 
study also offers a causal interpretation of the different 
forms of domain shift. The adaptation strategies are devel-
oped on the basis of the embedding of sample distributions 
in the reproducing kernel Hilbert space.

Beyond classical feature extraction, the authors in [47] 
align multitemporal sequences based on a measure of simi-
larity between sequence barycenters, which corresponds to 
a global alignment of the spectra in a time series of images. 
In [48], the authors consider spatial shifts in large image 

TABLE 1. ThE REPRESENTATION ALIgNmENT mEThODS USED IN REmOTE SENSINg. 

mEThOD LABELS IN s NO LABELS IN t mULTISOURCE UNPAIRED D  DImENSIONALITY NONLINEAR 

Pca # { # { # #

KPca [34] # { # { # {

(ss)tca [35] # { { # { # {

cca [36] # { # { { # { #

Kcca [37] # { # { { # { {

ma [43] { { { { { #

ssma [38] { # { { { #

Kernel method for  
manifold aliGnment [39] { # { { { {

Gm [50] # { # { # #
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acquisitions, in which the spectra are spatially detrended 
using Gaussian processes to avoid shifts related to local-
ized class variability. In [49], the authors perform anom-
aly detection by a sparse discriminative transform that 
maximizes the distance between the anomaly class and 
the background classes (defined as a set of endmembers) 
and minimizes the distance between the source and target 
distributions after reduction by PCA. In [50], the authors 
consider the domains as multidimensional graphs and 
propose to align the domains by solving a graph-matching 
problem. Finally, the authors in [51] find a multispectral 
mapping between source and target spectra to project the 
labeled pixels of the source domain into the target domain. 
Tie points are found between the labeled source pixels and 
the pixels in the target by registration, and then the map-
ping between the source and target is learned by regression 
between the corresponding pairs. Then the labeled pixels 
are projected into the target domain and are used to train 
a classifier therein. As for [40], partial overlap between the 
images is required.

As one can see in Table 1, some methods will be more 
suitable than others, depending on the problem. For exam-
ple, canonical correlation-based methods can be used only 
for coregistered data, while nonmultiview methods such as 
KPCA and (semisupervised) transfer component analysis 
[(SS)TCA] cannot align more than two domains at a time. 

In the following, we compare a series of methods on 
the challenging problem of transferring a classifier over a 
multiangular sequence of images over Rio de Janeiro [52], 
illustrated in Figure 6. More details on this example can be 
found in [38]. The images are not coregistered but are all 
acquired from a single pass of the WorldView2 sensor. For 
this reason, the only shifts observed are due to angular ef-
fects. The problem is an 11-classes problem, and a separate 
ground truth is provided per each image (Table 2).

The adaptation experiment is designed by taking the 
nadir image (off-nadir angle . )6 09i = %  as the source im-
age and using all the others as target images. We apply 
the PCA, KPCA, graph matching (GM), and semisuper-
vised manifold alignment (SSMA) transforms and then 
train a classifier using 100 labeled pixels from the source 
domain and predict all of the target domains using that 
classifier, without further modifications. For PCA, KPCA, 

and GM, the adaptation is done for each target domain 
separately, while, for SSMA, a single adaptation projec-
tion is obtained for all domains at once. For SSMA, we 
also used 50 labeled pixels per class from each target do-
main. To be fair in the evaluation, the projections for the 
PCA, KPCA, and GM methods are obtained in an un-
supervised way, but then the classifier is trained using 
the original training points from the nadir acquisition, 
stacked to the transformed labeled pixels of the domain 
to be tested. We also add a best-case scenario, where we 
directly use labeled samples from the target domains for 
the classification. The results are illustrated in Figure 7.

The prediction in the off-nadir images using the origi-
nal training samples from the nadir image leads to poor 
results, especially for strong off-nadir angles. All of the 
methods considered leverage the decrease in performance 
and lead to a quasi-flat prediction surface (meaning that 
the model can predict correctly, regardless of the angu-
lar configuration) with particularly good performance 
by the SSMA method, which seems to best align the data 

TABLE 2. ThE NUmBER Of LABELED PIxELS AVAILABLE fOR 
EACh DATA SET IN ThE mULTIANgULAR ExPERImENTS  
(i = Off-NADIR ANgLE).

CLASS  i 38.79- % 29.16- % 6.09% 26.76% 39.5%

Water 83,260 79,937 66,084 63,492 54,769 

Grass 8,127 8,127 8,127 8,127 8,127

Pools 244 244 223 195 195 

trees 4,231 4,074 3,066 3,046 3,046

concrete 707 719 719 719 696 

Bare soil 790 790 790 790 811

asphalt 2,949 2,949 2,949 2,827 2,827 

Gray  
buildings 6,291 6,061 5,936 4,375 4,527 

red  
buildings 1,147 1,080 1,070 1,046 1,042 

White 
buildings 1,683 1,683 1,571 1,571 1,571 

shadows 1,829 1,056 705 512 525 

tarmac 5,179 5,179 5,179 2,166 2,758 

−38.79° −29.16° 6.09° 26.76° 39.5°

FiguRe 6. The five images of the Rio de Janeiro angular sequence [52]. 
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distributions. This is not surprising, since, among the test-
ed methods, SSMA is the only one with a clear discrimina-
tive component that uses labels in all domains to define 
the projections.

ADAPTING CLASSIFIERS WITH  
SEMISUPERVISED APPROACHES
A widely used approach to DA is based on adaptation of 
the model of the classifier derived on the source domain 
to the target domain. In the literature, the approach is de-
fined as semisupervised if this adaptation is based only on 
unlabeled samples of the target domain (no target train-
ing samples are used). The rationale of semisupervised ad-
aptation is to use the relations between the distributions 
of the source and target domains to infer a reliable solu-
tion to the problem described in the target domain. The 
common assumption of most of the methods is that the 
source and target domains share the same set of classes 
and features.

The first attempts to address semisupervised DA in re-
mote sensing image classification were presented in [53], 
where a DA technique is proposed that updates the parame-
ters of an already trained parametric maximum-likelihood 
(ML) classifier on the basis of the distribution of a new im-
age for which no labeled samples are available. In [54], the 
ML-based DA technique is extended to the framework of 
the Bayesian rule for cascade classification (i.e., the classifi-
cation process is performed by jointly considering informa-
tion contained in the source and the target domains). The 
basic idea in both methods is modeling the observed spaces 
by a mixture of distributions, whose components can be es-
timated by the use of unlabeled target data. This is achieved 

by using the expectation maximization (EM) algorithm 
with the finite Gaussian mixture model. In [55] and [56], 
DA approaches based on multiple-classifier and multiple-
cascade–classifier architectures were defined. Gaussian 
ML classifiers, radial basis function neural networks, and 
hybrid cascade classifiers are used as base classifiers. The 
decision tree update and randomization are used for DA in 
[57]. A set of decision trees is made robust in the face of 
data set shift either by training it with the EM using den-
sity functions from the target domain (similar to [54]) or 
by randomizing the decision trees (but, in this case, with-
out control of the adaptation objective). The authors also 
propose a semisupervised extension where the classifiers 
performing poorly on the few labeled samples in the target 
domain are downweighted in the final decision. Finally, the 
DA technique proposed in [20] for multitemporal images 
addresses the challenging situation where the source and 
target domains have a different set of classes. The sets of 
classes of the target and the source domains are automati-
cally identified in the DA step by the joint use of unsuper-
vised change detection and the Jeffries–Matusita statistical 
distance measure. This process results in the detection of 
classes that appeared or disappeared between the domains.

The semisupervised problem has also been extensively 
studied in the framework of kernel methods with SVM 
classifiers, which has been done especially for addressing 
sample selection bias problems (see the “Transfer Learn-
ing and Domain Adaption” section). Most of the semisu-
pervised techniques proposed with SVM exploit the clus-
ter assumption, i.e., adapt the position of the hyperplane 
estimated on the source domain to the target domain, 
assuming that it should be located in low-density regions 
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of the feature space. In [58], the authors employ the trans-
ductive SVM, a method that iteratively moves the deci-
sion boundary of the SVM classifier toward low-density 
areas of the unlabeled target domain. Other semisuper-
vised approaches are imported in remote sensing in [59], 
where the SVM semisupervised learning is addressed in 
the primal formulation of the cost function. In [60], the 
authors regularize the SVM solution by adding a new 
term in the optimization accounting for the divergence 
between source and target domains (i.e., the MMD dis-
cussed in the “Adapting Data Distributions” section). By 
doing so, the decision function selected depends on a ker-
nel that both projects in a discriminative space and mini-
mizes the shift between training and test data. In [61], 
the authors cast the DA problem as a multitask learning 
problem, where each source–domain pair (i.e., each task) 
is solved by deforming the kernel by sharing information 
among the tasks. 

The Laplacian SVM technique applied to the classifica-
tion of multispectral remote sensing images is presented in 
[62], which exploits an additional regularization term on 
the geometry of both the labeled and the unlabeled sam-
ples by using the Laplacian graph. In [63], the authors also 
use a manifold-regularized classifier in a semisupervised 
setting, where the adaptation is performed by adding semi-
labeled examples from the target domain.

A specific semisupervised SVM that is defined for ad-
dressing DA problems is presented in [64]. The domain ad-
aptation SVM (DASVM) starts from a standard supervised 
learning on the training samples of the source domain, 
which is followed by an iterative procedure. At each itera-
tion, it includes in the learning cost function a subset of 
unlabeled samples of the target domain adequately select-
ed while gradually removing the training samples of the 
source domain. At convergence, the DASVM can accurately 
classify the samples of the target domain.

ADAPTATION OF THE CLASSIFIER  
BY ACTIVE LEARNING 
In most of the previously mentioned approaches, it is as-
sumed that no label information can be obtained in the 
newly acquired target domains (i.e., semisupervised DA). 
This assumption may hinder the success of classification in 
the case of very strong deformations or when new classes 
that are unseen during training appear in the test data. A 
small amount of labeled data issued from the target do-
main may solve this problem efficiently. However, since 
the acquisition is timely and can be costly, it becomes man-
datory to choose the samples well. AL strategies have been 
proposed to tackle this challenging task and guide the DA 
process with the selection of the most informative target 
samples [19], [27], [28], [65]–[67].

AL is the name of a set of methodologies aiming at the 
interaction between a user and a prediction model, where 
the user provides labels based on knowledge of the task 
to be solved and the model performs the prediction and 
highlights samples for which it has the highest uncertainty 
[68]. By focusing on these samples, the user provides the 
labels where they help the most and, thus, allows the clas-
sifier to migrate in a fast way toward the optimal model. 
Surveys on AL methods applied to remote sensing can be 
found in [69]–[71]. In the case of DA, the user provides 
examples coming from the target domain alone, and the 
optimal classifier is the one that would have been obtained 
with several examples in the target domain. The process 
starts with a classifier that is optimal for the source do-
main and gradually evolves to model the data distribution 
in the target domain. Figure 8 summarizes the AL process 
for DA.

One could apply classical AL strategies in transfer-learn-
ing problems under the sample selection bias assumption 
with successful results, because classical AL will point out 
samples close to the current decision boundaries, and the 
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FiguRe 8. A flow chart of the AL paradigm for DA. 
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user, by the labels provided, will disclose the shifted areas 
where the next iterations will focus. However, depending 
on the degree of transformation between the domains, one 
can use more sophisticated strategies that take into account 
measures of the deformation between the domains. In this 
respect, the following problems have driven DA-related re-
search in AL:

 ◗ When it is expected that new classes will appear in 
the target domain, AL can be used to highlight the 
areas of the feature space where these classes could 
be. In [19], by using the reasoning of sample selection 
bias, the feature space in the target domain is screened 
using clustering, and dense clusters with no labeled 
samples are presented to the user, who can then pro-
vide labels if new classes are present. In [72], the 
detection of new classes is set as a change-detection 
problem where an uncertainty of changes is assessed 
with an information theoretic criterion. Image time 
series are analyzed in [21].

 ◗ When significant differences between source and target 
domains are expected (i.e., when the sample selection 
bias assumption does not hold), the presence of labeled 
source samples, although beneficial at the beginning of 
the process, can be harmful for the classification of the 
target domain [27], [28] (see the examples in the “Trans-
fer Learning and Domain Adaptation” section and 
Figure 3). If the class distributions in the target domain 
overlap with those in the source domain, relying on the 
labels from the source will lead to classifier errors. Ac-
cordingly, the approaches in [27], [28], and [67] consider 
reweighting of the samples in the training set enriched 
by AL. When samples from the source domain become 
less relevant or misleading for the correct classification 

of the target domain, they are downweighted in the 
adapted classifier or completely removed. Accordingly, 
the classifier specializes to the target domain through 
the inclusion of target samples and gradually forgets the 
initial source domain.

 ◗ When the areas to be processed become very large, 
specific solutions must be designed to avoid too many 
iterations of the AL process. In this respect, solutions 
based on the selection of clusters [73], compressed sens-
ing [74], or geographically distributed search strategies 
[75]–[78] have been considered.
In the following, we focus on one example related to the 

second point above, i.e., the reweighting of source samples. 
This example is adapted from [67]. We study the feasibil-
ity of the migration of a model optimized for land-cover 
mapping in a geographical area to another spatially dis-
joint region. To do so, we consider the well-known Ken-
nedy Space Center (KSC) hyperspectral image acquired 
by the airborne visible/infrared imaging spectrometer 
[Figure 9(a) and (b)] and try to adapt the model learned 
therein to be accurate in a spatially disjoint section of the 
same flightline [Figure 9(c) and (d)]. We consider only the 
ten classes present in all images. The starting model is 
learned using a training set composed of 50 labeled pix-
els per class and is then enriched by new samples that are 
either added randomly or using the breaking ties AL strat-
egy [79]. The classifier is an SVM, either standard (when no 
other mention is done) or adaptive using the TrAdaBoost 
model, which is a DA method based on the reweighting 
of the SVM sample weights after the inclusion of the new  
labeled points from the target domain [66].

When using the source SVM without adaptation, we 
reach an OA lower than 65%, while the results obtained by 
an SVM that is trained directly on the target labeled sam-
ples (which are available for testing) would provide an ac-
curacy of 90% (Figure 10). Here, the shift is clearly visible 
and relates to a loss in accuracy of 25%. Using a random 
sampling in the target domain, we get a constant increase 
in performance [shown in Figure 10(a) by the green line 
with * markers]; however, after 300 queries, we are still 5% 
away from the classifier learned using only 500 samples 
from the target domain. Moreover, the learning rate is slow 
and the gain is almost linear with the number of queries. 
We then assess different DA strategies. 

First, TrAdaBoost is applied to the set enriched by the 
random samples [shown in Figure 10(a) by the brown line 
with # markers]. By forgetting the source domain, i.e., by 
downweighting the source samples that are contradictory 
with respect to the new samples from the target domain, 
we already see a significant improvement that fills half of 
the gap between the best case and the random sampling. 
However, when using AL (shown by the blue line with dia-
mond markers) and even more when using it in conjunction 
with the TrAdaBoost model (shown by the black line with 
circle markers), the learning rate is much higher in the first 
iterations, which means the first queries are much more 

(a) (b)

(c) (d)

FiguRe 9. KSC data used in the AL DA experiment: (a) the source 
image, (b) the source GT, (c) the target image, and (d) the target GT 
(not available). 
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effective than in the random sampling experiments, and 
the model converges to the result obtained with 500 ran-
dom target queries (shown by the solid blue line) with only 
250 active queries, corresponding to a total of 750 samples 
in the model since we still have the 500 initial samples from 
the source. Figure 10(b) shows the percentage of the sup-
port vectors from each domain with nonzero weights. In 
the target domain, this share increases constantly [shown 
in Figure 10(b) by the solid blue line], while it stabilizes for 
the samples from the source to 40% of the original train-
ing samples (shown by the dashed red line). This means 
that the importance of the source in the model is strongly 
reduced in the first iterations and then remains constant, 
while each new sample from the target becomes immedi-
ately important and receives a strong weight from the boost-
ed SVM classifier.

guiDeLineS FoR cHooSing  
tHe aDaptation StRategY
In this section, we will first provide guidelines for the selec-
tion of the most appropriate adaptation strategy and then 
discuss the issue of the validation of the adapted models.

HOW TO CHOOSE 
In the previous sections, we presented different approach-
es to DA that were grouped into four families. Depending 
on the problem considered, an analyst can favor one or 
another. However, there are some guidelines that should 
be taken into account that will depend mainly on the data 
available (e.g., the sensors to be used) and on the effort 
already provided by the analyst (e.g., whether a classifier 
is already available or if labels in the target domain are 
available or can be acquired easily). The guidelines are 
as follows: 

 ◗ If the data to be used are acquired by different sensors, 
they are associated with different feature spaces. In this 
case, only heterogeneous DA (i.e., methods that allow 
for aligning spaces of different dimensionality) should be 
considered. Accordingly, multiview feature-representation 
transfer methods such as CCA and KCCA or MA (see the 
“Adapting Data Distributions” section) are the recom-
mended choices. 

 ◗ If a classifier trained on the source is already available 
and the effort of training is considerable, methods of 
the third and fourth families (i.e., the adaptation of 
classifiers and the adaptation by selective sampling, 
respectively) should be preferred. These methods 
build on the model that is already defined on the 
source domain, while those of the two other families 
imply the definition of a new classifier that is success-
ful in all domains.

 ◗ Whenever it is possible to acquire new labeled samples 
in the target, it should be done. There is no better way 
to correct for a data set shift than by having examples of 
the class-conditional distribution in the target. The AL 
and MA methods are to be preferred in that case.

 ◗ The level of data set shift the methods can cope with 
goes along with their level of flexibility. Representation 
methods relying on labeled samples from the target can 
cope with strong nonlinear deformations because they 
allow for a kind of feature registration between the do-
mains, while those that do not use target samples (e.g., 
PCA, TCA, and GM) are successful only if the data distri-
butions are already prealigned and have not undergone 
drastic shifts, such as the cases where the signature of a 
target class becomes identical with one of the others in 
the source. Among the unlabeled methods, the differenc-
es in their flexibility should be considered, going from 
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linear global methods (e.g., PCA representation transfer) 
to local methods (e.g., based on clustering, as with GM 
and MA). If the first can address only rotations, transla-
tions, and to some extent scalings of the data clouds, the 
others can model the per-sample transformation and al-
low more flexibility of the transform. The same type of 
reasoning holds for semisupervised methods, which will 
be able to correct for smaller shifts than methods based 
on AL. When deployed in a DA setting, AL methods can 
collect target labeled samples that provide evidence of 
the real target class distributions, while the semisuper-
vised method uses only unlabeled data in the target and, 
therefore, cannot easily discover drastic changes in the 
class distributions.

 ◗ A combination of methods from different families is 
also possible. For example, selecting invariant features 
can be a preprocessing step to kernel MA, where the la-
bels in the target domain have been acquired by AL us-
ing the labels from the source domain. 

With these simple guidelines in mind, the analyst can select 
the most appropriate strategy (or combine a series of them) 
according to the considered data and application.

HOW TO VALIDATE
A typical bottleneck for the employment of an adaptation 
strategy is the validation of the adaptation process itself, 
since it is assumed that no (or only few) labeled data are 
available for the target domain. Nonetheless, one should 
assess whether the adaptation was successful in the pro-
cessing of the target image, even though no labeled sam-

ples are available for such 
validation. To address this 
crucial issue, a circular vali-
dation strategy is presented 
and applied to remote sens-
ing images in [64]. The strat-
egy is based on the idea that 
an intrinsic structure relates 
the solutions that are consis-
tent with the source and the 
target domains. A solution 
for the target domain, for 
which no prior information 
is available, is assumed to be 
consistent if the solution to 
the source-domain data is as-
sociated with an acceptable 
accuracy. The solution to the 

source-domain data should be obtained by applying the 
same DA algorithm in the reverse sense, i.e., by using the 
classification labels in place of missing prior knowledge 
for target-domain instances. The source-domain data is 
considered as unlabeled in the reverse DA learning, and 
the accuracy of the source-domain data can be evaluated 
due to the available true labels for source-domain sam-
ples. This strategy can be effective for both understanding 

if the adaptation is feasible in the considered data set and 
selecting the most effective strategy.

concLuSionS
In this article, we reviewed the recent DA advances for re-
mote sensing image analysis. DA is a rising field of investi-
gation in remote sensing, as it answers the need for reusing 
available ground reference samples to classify or further 
process new image acquisitions that may be covering dif-
ferent areas, at different time instants, and possibly with 
different sensors. The increasing satellite-data availability 
trend observed in the last few years (in particular, thanks 
to satellite constellations such as the Sentinels or the NASA 
A-Train) and the commercialization of drone-mounted 
cameras have pushed these problems to the forefront of re-
searchers’ and analysts’ priorities.

We have reviewed the recent models proposed in the lit-
erature, which were grouped in four main families: 1) the 
approaches based on the selection of invariant features, 
2) those based on the matching of the data representation, 
3) those based on the adaptation of the classifier trained 
on the source domain, and 4) those based on limited but 
effective sampling of labeled samples in the target domain. 
With practical examples, we have provided the reader with 
a thorough introduction to the field and some guidelines 
for the selection of the approaches to use in real applica-
tion scenarios.

We believe that DA is of the highest importance to fu-
ture Earth observation since multimodality and repeated 
imaging have become unavoidable [7]. The data are already 
there, and new, challenging problems can now be tackled 
with remote sensing. The discipline has succeeded in enter-
ing many new sectors of society, and it is now time to pro-
vide the tools to the users to perform a trustable monitor-
ing that can be obtained in different sensor configurations 
or modalities. We think that DA and machine learning in 
general can contribute to providing an answer to this call.
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