
     Abstract—Since the significant intensity variations ex-
isted between different modal images, the deformable reg-
istration is still very challenging. In this paper, in order to 
alleviate the variations deficiency and attain robust align-
ment, we propose a multi-dimensional tensor based mo-
dality independent neighbourhood descriptor (tMIND) to 
measure the similarity between the images. The tMIND 
compares the neighboring tensors which consisting of mul-
ti-filters induced features. In this work we learn these fil-
ters via PCA network (PCANet). We additionally describe 
the scheme of incorporating these filters into the tMIND. 
Experimental evaluations demonstrate its promise and 
effectiveness over the current state-of-the-art approaches. 

Index Terms—Non-rigid registration, tensor, unsu-
pervised network, multi-filters, MIND. 

I. INTRODUCTION

Alignment of multi-modal images is a vital step for further 
analysis in the fields of medical imaging, such as magnetic 
resonance imaging (MRI) and computed tomography (CT), etc. 
Aid by the accurate and robust registration, the thereafter fu-
sion, segmentation, etc, even the diagnostic tasks can be im-
proved. Compared to the advances resulted in a number of 
successful methods for deformable registration techniques for 
scans of the same modality, the registration of images from 
different modalities is still challenging [1]. The severe intensity 
variations across modalities and large non-rigid motion are the 
primary difficulties. 
     Since the local intensity of different modalities is exactly 
different, it is essential to obtain a unified representation of the 
heterogeneous anatomies such that meaningful comparisons 
can be performed. A great number of methods have been pro-
posed over the years to address this issue. The Mutual infor-
mation (MI) and the Modality independent neighbourhood 
descriptor (MIND) are two representative successful ap-
proaches [1-3]. Specifically, MI is the most widely used in-
formation theoretical algorithm that globally describe the cor-
relation between the reference and images to be registered. As a 
structural image representation, MIND assigns each pixels a 
structural vector that describes the central pixel in a lo-
cal/nonlocal way. In summary, the internal image representa-
tion approaches in fact exploit the nonlocal or global infor-
mation of the object itself such that the transformed coefficient 
under different object is similar or the same. 
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    The similarity metric learning methodology via external 
learning also receives the attentions of researchers. The idea of 
using supervised learning to build a similarity metric for mul-
timodal images has been explored in a number of works. For 
instance, Guetter et al. proposed to use Kullback-Leibler di-
vergence to the joint-image distribution [4]. More works 
transfer the problem of learning a similarity metric to be a 
binary classification, whose goal is to discriminate between 
aligned and misaligned patches given pairs of aligned images. 
In [5], Lee et al. proposed a new supervised technique to learn 
the similarity measurement via the discriminative structured 
support vector machine. Within this similarity measurement, 
the correct correspondences are assigned high values while the 
wrong correspondences are assigned low ones. Michel et al. 
used a method based on Adaboost [6]. Simonovsky et al. relied 
on Convolutional neural network (CNN) learning method as 
the suitable set of characteristics for each type of modality 
combinations can be directly learned from the training data [7]. 
Tow shortcomings occur with the supervised learning ap-
proaches. The first is that the learning procedure is 
time-consuming. Like CNN networks optimize the filters by 
utilizing gradient method on large datasets, relying on the ex-
pertise of parameter initiation and fine tuning. Besides, super-
vised learning requires image labels. Yet label become scarce 
along with the increasing image scale. As we know, the unsu-
pervised approaches used for registration is very few [8, 9]. Cao 
et al. learned two local dictionaries to describe the different 
modalities, subjecting their coefficients are the same [8]. It 
needs training images available for all modalities. Due to the 
complicated computation, the second strategy is far from sat-
isfactory.    

Inspired by the great success of deep neural networks in 
computer vision [10, 11, 12, 13, 14], we propose a mul-
ti-dimensional tensor-based modality independent neighbour-
hood descriptor (tMIND). Specifically, recent researches show 
that the unsupervised filter learning, incorporating with the 
multi-layer architecture, can achieve excellent performance in 
pattern recognition, deoising, etc [11, 12, 13]. In this work, the 
tensor-based tMIND extends the patch-based descriptor by 
generating multi-filters induced features. We learn these filters 
via PCANet, which applying Principal component analy-
sis (PCA) to learn optimal image filters in a layer-wise way 
[14]. We additionally describe how incorporate these filters 
into the tMIND. Therefore, the present tMIND inherits the 
strengths of internal representation and external learning.   

The rest of the paper is organized as follows: After reviewing 
some knowledge of the MIND, in Section II we introduce a new 
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tensor-based MIND descriptor, followed by introducing how to 
generate these multi-filters in details. Subsequently, Section III 
demonstrates the performance of the proposed algorithm. Fi-
nally, conclusions are given in Section IV. 

II. PROPOSED TENSOR-BASED MIND

 In this section, we briefly review the patch-based MIND, 
and then introduce a higher-dimensional tensor-based MIND 
descriptor: from patch to cube/volume. Subsequently, we de-
scribe how to generate the learned filters by employing unsu-
pervised network. Finally, the detailed implementation of reg-
istration is described.  

A. Proposed tMIND Descriptor

The modality independent neighborhood descriptor (MIND)
[3] was proposed by Heinrich et al. for multi-modal image
registration. The MIND was computed based on the similarities
between neighboring patches. It only utilizes the image inten-
sities for similarity computation. Thus may lead to inaccurate
registration results for corners, edges and complicated textured
regions.

 Specifically, the MIND borrows the self-similarity concept 
introduced by Buades et al. [15]. It explores image 
self-similarities by replacing the local comparison of individual 
pixels with the non-local comparison of image patches. In the 
MIND, for two pixels at x  and x r  in the spatial search 

region R of image I , the similarity of ( , , )MIND I x r  is cal-

culated as:  

1 ( , , )
( , , ) exp( )    

( , )

D I x x r
MIND I x r r R

n V I x


    (1) 

2
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where ( , , )D I x x r  is the Euclidean distance between two 

similarity windows (i.e., image patches xP  and x rP  ) centered 

at x  and x r , respectively. The denominator ( , )V I x  in Eq. 

(1) acts as the smoothing parameter and it is computed as the
mean of the patch distances themselves within a
six-neighborhood centered at x .

 As can be observed in Eq. (1)(2), the MIND computes the 
pixel similarity based on the differences between the intensities 
of image patches; thus it is not robust to contrast variations. It is 
difficult to accurately determine self-similarity for the medical 
images with the complicated edge/texture features. The incor-
rect local image structure representation resulting from the 
MIND will influence the final non-rigid multi-modal registra-
tion results. To alleviate the deficiency, some researchers turn 
to integrate some intensity-insensitive information such as 
phases and gradients into the MIND principle for achieving 
better alignment [16-18]. In this work, we introduce a more 
general descriptor, which replaces the patch by tensor extract-
ing from multi-feature images via convolutional filters. Spe-
cifically, the similarity of tMIND is computed as:  

   
1 ( , , )

( , , ) exp( )    
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    (3) 

2
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where 
xT  is the extracted image tensors formed by concate-

nating patches of multi-features centered at x . Assume there 
has L  filters, then there exist L  feature images 

, 1, ,l lI d I l L   L  and form the tensor object 1[ , , ]LI IL . 

  denotes the 2D convolution operation. The difference of 

extracted patch xP  and cube 
xT  is exhibited in Fig. 1. 

Fig. 1. Visualization of the basic elements in patch-based MIND and ten-
sor-based tMIND. 

      As a generalization of MIND, tMIND involves two merits 
and advantages. First, from the representation viewpoint, the 
multi feature images are derived by the convolutional filters, 
which reveals the spatial relations in neighbor region and pre-
fers to reflect the intrinsic representation of images from dif-
ferent modalities. Therefore, it is desirable that images from 
different multimodalities are transformed into a common space 
such that can be compared uniformly. Second, from the 
high-dimensional viewpoint, the new similarity metric can be 
seen as weight aggregation or boosting of the patch-based 
metric, as seen from the following derivation:  

2

2

1

2

1

1
( , , ) exp( ) 

( , )

[ ] [ ]
1

exp( )
( , )

[ ] [ ]1
exp( )

( , )

x x r

l l

L

x x r
l

L
x x r

l

l l

d I d I

T T
tMIND I x r

n V I

d I d

x

n V I x

n I

I

V x











 



 

 










 (5) 

    Notice that in Eq. (3)(4), only the simple L2-norm of the 
tensor is employed in the similarity measure. More sophisti-
cated property or measure (e.g., low rank) defined on the basis 
of tensor may prefer to better descriptor [19, 20]. This will be 
investigated in further study. 

B. Filter Learning via Unsupervised Network

In the current work, we choice the PCANet to provide the
learned filters. PCANet is a lightweight CNN in which the 
filters in the convolution layers are learned by the unsupervised 
learning method PCA. The PCANet involves two advantages: 
one is that PCA coding is commonly used in image processing 
community, like the recent PCA-LPG and patch-based PCA, 
both employing PCA to clustered patches [21-23]. As for 
PCANet, its training procedure is extremely simple and effi-
cient because it does not involves regularized parameters or 
requiring numerical optimization solvers. The second is that it 
has strong generalization ability. As we will illustrate in the 

Authorized licensed use limited to: Nanchang University. Downloaded on September 23,2020 at 09:39:43 UTC from IEEE Xplore.  Restrictions apply. 



experiment, the PCANet filters learned on well prepared da-
tabases can provide reasonably accuracy for various test im-
ages.  

  We use a patch of size 1 2k k  to slide each pixel of the i th 

image 
m n

iI R   and then reshape each patch into a column-

vector, which is then concatenated to obtain a matrix 

1 2k k mn

iX R  . Subsequently, for all the training images  
1

N

i i
I


, 

we can obtain the following matrix: 
1 2

1 2[ , , , ] k k Nmn

NX X X X R  L . After subtracting patch mean 

from each patch (for convenience we still denote it as X ), we 
apply PCA to the mean-removed matrix as follow: 

11 2 1

2
min    . .  

k k L

T T
LFU R

X UU X s t U U I


                (6) 

 The solution of this minimization is the 1L  principal eigen-

vectors of TXX . The resulting learned PCA filters are termed 
as 

1 2

1 2

1
, 1( ( )) ,    1, 2, ,k kT

l k k ld mat q XX R l L   L    (7)                   

where the operator 
1 2, ( )k k lmat u  maps the vector 1 2k k

lu R  to 

its matrix formulation 1 21 k k

ld R  .  Given the first layer’s con-

volution filter bank 
1

1 1 1 1
1 2{ , , , }Ld d d d L , we convolve each 

training image iI  with the 1L  filters: 
1 1, 1,2, ,i iI I d i N   L  (8) 

where 
1

1 1 1 1
1 2{ , , , }i i i i LI I d I d I d   L  is the first layer’s 

feature map set of image iI  convolved by the filters. 

 Almost repeating the same process as in the first stage, we 

collect overlapping patches from the feature maps 
1

1 1, ,
, 1, ,{ }i N

i l l LI 


L
L , 

employ PCA to the mean-removed patches induced matrix, and 

obtain the PCA filter bank 
2

2 2 2 2
1 2{ , , , }Ld d d d L . The whole 

procedure of the unsupervised network is shown in Fig. 2. 

Fig. 2. Illustration of the two-layer unsupervised network. 

After the two-layer filters are learned, we adopt a new fash-
ion to collect them into the registration procedure. i.e., at first, 
borrowing the ideas from the GoogLeNet [24], we use these 
multi-layer filters in a parallel way to convolute the images 
simultaneously. Secondly, due to the redundancy, some filters 
at different layers tend to appear repeated. Motivated by the 
work in dictionary learning [25] that enforcing incoherence 
between the different dictionaries, we propose to remove some 
strongly correlated filter from the filter set, thereby improve the 
discriminatory power of the filter set. A cross correlation cri-

teria is employed in this work: 1

2

1, ,1 2
1, ,{( ) }i LT

i j j Ld d 


L
L . The filter in 

2nd layer whose correlation value above 0.95 with any filter in 
the 1st layer filter set will be removed. An example is shown in 
Fig. 3.  

       (a)

        (b)
Fig. 3. Visualization of learned two-layer PCANet filters (a) and the final 
selected filters (b). 

C. Multi-modal Registration Procedure

One motivation of using convolutional operator as a basic
tool is that it allows to align multi-modal images via a simple 
similarity metric across modalities. Once the descriptors are 
extracted for both images, yielding a vector for each voxel, the 
similarity metric between two images is defined as the SSD 
between their corresponding descriptors. Therefore efficient 
optimization algorithms, which converge rapidly can be used 
without further modification.  

The registration procedure is implemented same as in [3]. 
Concretely, the registration with tMIND descriptor is derived 
by the following objective function:   

    2
1 2min ( ( ), ( )) ( ( ) * ( ))T

u
x

S I x I x u tr u x u x                 (9) 

where 
1 2 1 2

1
( ( ), ( )) ( , , ) ( , , )

r R

S I x I x tMIND I x r tMIND I x r
R 

  . The weighting 

parameter   balances the similarity fidelity and the local de-
formation regularization.  
   Eq. (9) can be rewritten as  

1 2min , [ ( ( ), ( )), ( )]T

u
f f f S I x I x u u x       (10) 

Since it has 
2 2 2( ) ( ) ( )I x u I x I xS S S u    and u u    , Its derivative 

is 
2( )[ , ]I xJ S    . By applying the Gauss-Newton, at each iter-

ation the update rule is T TJ Ju J f , J  is the derivative of f  

with respect to variable u . Hence the resulting deformation 

field at iteration 1iu  is  

 
2 2 2 2

1
( ) ( ) ( ) ( )( ) ( )T i T i

I x I x I x I xS S u S S u                    (11) 

    At each step, a symmetric deformable registration is fol-
lowed such as to obtain diffeomorphic transformations, 
avoiding physically implausible folding of volume occurs [26]. 
Additionally, a multi-resolution scheme is used to represent 
coarse-to-fine details of both volumes for fast and robust reg-
istration. 

III. EXPERIMENTAL RESULTS

    In this section, we perform a number of challenging regis-
tration experiments to evaluate the accuracy and robustness of 
the present method. We evaluate our findings based on quali-
tative and quantitative measures. The Root Mean Square Error 
(RMSE) and Target Registration Error (TRE) are used for 
quantitative comparisons of registered results. For simulated 
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data, the RMSE is calculated between the source and aligned 
images. The target registration error (TRE) of anatomical 
landmarks (The TRE for a given transformation ( )u x  and an 

anatomical landmark pair ( , )x x ) is defined by: 

  
2

( )TRE x u x x G                           (12) 

where G   and G  are the set of anatomical landmarks and the 

number of landmarks in the reference image, respectively. We 
ran all the tests on an Intel Core i7-4700MQ CPU 2.4 GHz 
Windows 64-bit operating system with 8 GB RAM.   

We first investigate the parameter of tMIND. Then we apply 
the method to some simulated data and perform deformable 
registrations ten CT datasets of lung cancer patients. In all the 
experiments, we manually tuned the weighting parameter   
for both MIND and tMIND methods such that the best 
RMSE/TRE is achieved. In the MI and Residual Complexity 
(RC) method, the regularization parameter is also optimized 
manually.  

A. Parameter Setting

In the patch-based MIND, its search region is usually in the
range of 3 3 , the Gaussian patch parameter sigma is below 
0.5, which roughly equals to 3 3 [3]. As an extension to tensor 
formulation, we argue that a good tensor formulation should 
has near or equal length on each mode. Therefore, we restraint 

our learned filter number (i.e., 1L  and 2L ) no more than 9 and 

the filter size (i.e., 1k  and 2k ) no more than 5.   

     We use the eighteen T1, T2 and PD weighted MRI scans 
with size 256 256  from the Visible Human dataset [27] as 
samples to train the PCANet filters. One sample scan is de-
picted in Fig. 4 and the learned filters with filter number 

1 2 8L L   are shown in Fig. 5. The cases of 1 2 3k k   and 

1 2 5k k   are depicted. As can be seen, the first and second 

filters look like the gradient filters. Additionally, the 8th filter in 
Fig. 5 is very similar to the LapLacian filter. In order to inves-
tigate the registration performance of the tMIND with regard to 
filter number and filter size. We apply these two filter set with 
filter number ranging from 1 to 8 to register a T1-PD pair as 
shown in Fig. 6. In the synthetic data, a geometric distortion 
with a thin-plate spline (TPS) model is applied to the corre-
sponding source image to get the fixed and moving images 
[28]. The RMSE result is shown in Fig. 7. It can be observed 

that the case of 1 2 3k k   is generally better than that of 

1 2 5k k  . Furthermore, varying 1L  from 1 to 8, the result 

improves and more robust. Hence in our experiment, we set 

1 2 3k k   and 1 2 8L L  .  

   (a)     (b)      (c) 

Fig. 4. Example of multimodal images in Visible Human dataset. (a) T1 MR, 
(b) T2 MR, and (c) PD MR.

      (a) 

        (b) 
Fig. 5. Visualization of two-layer filters learned from Visible Human dataset. 

(a) size 1 2 3k k  , (b) size 1 2 5k k  . 

  (a)         (b)     

 (c)           (d)    

 

          (e)                                                          (f) 
Fig. 6. Registration comparison of T1-PD pair. (a) fixed image, (b) moving 
image, (c) source/reference of the moving image, (d)(e)(f) registration display 
between the reference and moving image obtained by MIND,  tMIND with 2 
and 8 filters.  
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      It is worth noting that in the case of 1 2 3k k   as shown 

in Fig. 5(a), the filter set includes the gradient and LapLacian 
filters. This indicates that our proposed model can be seen as a 
generalization of several recent works for improving the MIND 
descriptor [16-18].      

Fig. 7. Registration error RMSE of tMIND vs learned filter number. 

B. Deformable registration of simulated data

We also extract thirty T1, T2 and PD weighted MRI scans
with size 181 217  from the BrainWeb dataset as samples to 
train the PCANet filters. As shown in Fig. 8, T1 MR image 
shows better anatomical detail and T2 MR reflects pathological 
changes better. Fig. 9 depicts the learned PCANet filters. It can 
be observed that the filters learned from the simulated dataset is 
very similar to that of Visible Human dataset, in terms of visual 
inspection. This implies that it is desirable to construct a ge-
neric training dataset for medical images specifically for MR 
images. We use the learned filters in Fig. 5(a) in the following 
two experiments, conducted in Brainweb dataset [29] and the 
Brain Tumor Segmentation (BRATS) challenge [30], respec-
tively.        

        (a)                                   (b)                                    (c) 
Fig. 8. Example of multimodal images in BrainWeb dataset. (a) T1 MR, (b) T2 
MR, and (c) PD MR. 

   (a) 

        (b) 
Fig. 9. Visualization of two-layer filters learned from BrainWeb dataset. (a) 

size 1 2 3k k  , (b) size 1 2 5k k  . 

  In the first experiment of aligning the T2-T1 pair, the spa-
tially-varying intensity distortion is added to both fixed and 
moving images, as done in Fig. 6. In the result, the reference 
image is displayed in green and the registered version of 
moving image in magenta. As expected, a well-done registra-
tion yields a gray-scale image and larger color differs imply 
higher misregistration. The registration comparison is shown in 
Fig. 10. It can be observed that the RC method cannot yield 
good result and the MI measure also fails to the heavy intensity 
distortion. tMIND produces better registration results in the 
region with simulated intensity distortions and large spatial 
deformations than MIND, as indicated by the yellow arrows. 
The superior result indicates that the high-dimensional and 
deep representation enabled tMIND to better avoid the uncer-
tainty existed in the registration procedure.  
     In the second experiment of aligning the T1-T2 pair, both 
the fixed and source image have tumor. We apply a spatial-
ly-varying intensity distortion as described by Myronenko et al. 
[28] to the source image to obtain the moving image. As shown
in Fig. 11(d), the MI method cannot accurately correct the
deformations in the left boundary area. In Fig. 11(e), the MIND
fails to align the region around the tumor, even though different
combinations of parameters were tried. There still exist some
excessive localized deformations, which are highlighted by the
red circles. While it can be observed that the tMIND descriptor
less dependent on the intensity differences and the associated
result keeps more consistent with the reference image.

  (a)          (b)    

       (c)        (d)    

R
M

S
E

Authorized licensed use limited to: Nanchang University. Downloaded on September 23,2020 at 09:39:43 UTC from IEEE Xplore.  Restrictions apply. 



       (e)                                                          (f) 
Fig. 11. Registration comparison of T1-T2 pair. (a) fixed image, (b) source 
image, (c) moving image, (d) MI method, (e) MIND and (f) tMIND.

C. Deformable registration of real data

We further test the presented algorithm on DIR-Lab dataset
[31], which consists of ten 4D thoracic CT scan pairs between 
inhale and exhale phase of the breathing cycle. Each scan pair is 
acquired on the thorax and upper abdomen of patients treated 
for esophagian cancer, between inhale and exhale phase of the 
breathing cycle. The slice thickness is 2.5 mm, and in-plane 
resolution varies in the interval of 0.97 and 1.16 mm. Major 
challenges arise from possible contrast variations between 
tissue and air induced by lung compression, motion disconti-
nuities at the lung/rib cage interface, as well as large defor-
mations of small features such as lung vessels, airways.  
     In the experiment, we apply registration directly between 
each pair of the original CT scans. For each scan, 300 ana-
tomical landmark pairs within the lungs have been carefully 
annotated by thoracic imaging experts. We evaluate the regis-
tration accuracy based on these landmark point sets. Table 1 
summarizes the average TRE comparison results. The mean 
landmark distance and corresponding standard deviations are 

recorded. It can be observed that tMIND achieves lower TRE 
value than the MIND method. The visual comparison of case 7 
is shown in Fig. 12. In this visualization, the source image is 
shown in magenta while the reference image is shown in green. 
Gray scale image will emerge in the regions where the images 
are fully aligned. In the unregistered case, magenta and green 
areas can clearly be observed indicating that the morphology is 
not aligned. In the registered cases, these colored areas almost 
disappear indicating that the images are successfully registered. 
Particularly, tMIND diminishes larger regions than that of 
MIND.  

Table 1. Target registration error (in millimeters) obtained over the 10 cases of 
thorax CT-scans for all tested experimental conditions. 

BEFORE MIND tMIND 
TRE 8.46(6.58) 1.64(3.04) 1.21(1.15) 

IV. CONCLUSIONS

     Aid by multi-filters learned from the unsupervised network, 
this paper presented a new tensor-based descriptor tMIND for 
structural representation of images to be registered. tMIND 
concentrates multi-features as a whole object to be compared. 
We employed the PCANet to learn filters so as to produce 
multi-features. Experiments were conducted on simulated and 
real data to validate the strengths of the proposed method.  
     The primary contribution of this paper is to building a gen-
eral framework of constructing high-dimensional descriptor for 
deformable registration by means of unsupervised deep learn-
ing. Forthcoming study will focus on developing new unsu-
pervised learning methods to enhance the effectiveness and 
efficiency. Besides, more registration experiments evaluated by 
clinical experts will be investigated.      

   (a)       (c)       (e)   (g)        (i)    
 

       (b)                                              (d)                                              (f)                                              (h)                                               (j) 
Fig. 10. Registration comparison of T2-T1 pair. (a) Source image of the fixed image (b), (c)(d) moving image, (e) MI method, (f) RC method, (g) MIND, (h) 
tMIND, (i)(j) registration display between the reference and moving image obtained by MIND and tMIND.  
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Fig. 12. Deformable registration result for Case 7 of the CT dataset. Top: axial, middle: sagittal and bottom: coronal plane. Left row: before registration, center and 
right row: registration by MIND and the proposed tMIND technique. The target image is displayed in magenta and the source image in green (complementary 
color).  
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