联系我们
意见反馈

关注公众号

获得最新科研资讯

简历详情
黄荷叶
北京 | 清华大学 | 博士生
  邮箱   hhy18@mails.tsinghua.edu.cn 
论文

驾驶人驾驶决策机制遵循最小作用量原理

期刊: 中国公路学报  2020
作者: Huang Heye,Zheng Xunjia,Wang Jianqiang

A probabilistic risk assessment framework considering lane-changing behavior interaction

期刊: Science China Information Sciences  2020
作者: Qing Xu,Xiangbin Wu,Jinxin Liu,Yibin Yang,Xunjia Zheng,Cong Fei,Jianqiang Wang,Heye Huang
DOI:10.1007/s11432-019-2983-0

Driving risk assessment based on naturalistic driving study and driver attitude questionnaire analysis

期刊: Accident Analysis & Prevention  2020
作者: Qing Xu,Jinxin Liu,Hanchu Zhou,Yang Li,Heye Huang,Jianqiang Wang
DOI:10.1016/j.aap.2020.105680

Fast and robust approaches for lane detection using multi‐camera fusion in complex scenes

期刊: IET Intelligent Transport Systems  2020
作者: Keqiang Li,Jianqiang Wang,Qing Xu,Heye Huang,Jinxin Liu,Dameng Yu,Hui Xiong
DOI:10.1049/iet-its.2019.0399

An integrated architecture for intelligence evaluation of automated vehicles

期刊: Accident Analysis & Prevention  2020
作者: Jianqiang Wang,Wenjun Liu,Jinxin Liu,Yibin Yang,Xunjia Zheng,Heye Huang
DOI:10.1016/j.aap.2020.105681

Behavioral decision‐making model of the intelligent vehicle based on driving risk assessment

期刊: Computer-Aided Civil and Infrastructure Engineering  2019
作者: Qing Xu,Xiaocong Zhao,Jianqiang Wang,Heye Huang,Xunjia Zheng
DOI:10.1111/mice.12507

Objective and Subjective Analysis to Quantify Influence Factors of Driving Risk*

期刊: 2019 IEEE Intelligent Transportation Systems Conference (ITSC)  2019
作者: Sifa Zheng,Qing Xu,Jianqiang Wang,Xunjia Zheng,Yang Li,Heye Huang
DOI:10.1109/itsc.2019.8917382

A Novel Framework for Road Traffic Risk Assessment with HMM-Based Prediction Model

Over the past decades, there has been significant research effort dedicated to the development of intelligent vehicles and V2X systems. This paper proposes a road traffic risk assessment method for road traffic accident prevention of intelligent vehicles. This method is based on HMM (Hidden Markov Model) and is applied to the prediction of steering angle status to (1) evaluate the probabilities of the steering angle in each independent interval and (2) calculate the road traffic risk in different analysis regions. According to the model, the road traffic risk is quantified and presented directly in a visual form by the time-varying risk map, to ensure the accuracy of assessment and prediction. Experiment results are presented, and the results show the effectiveness of the assessment strategies.

期刊: Sensors  2018
作者: Jianqiang Wang,Heye Huang,Zhiguo Zhao,Hongbo Gao,Di Zhang,Xunjia Zheng
DOI:10.3390/s18124313

主页访问量:192