联系我们
意见反馈

关注公众号

获得最新科研资讯

简历详情
Yaoming Cai
Wuhan
  邮箱   caiyaomxc@outlook.com  电话   caiyaomxc@outlook.com
论文

BS-Nets: An End-to-End Framework for Band Selection of Hyperspectral Image

期刊: IEEE Transactions on Geoscience and Remote Sensing  2020
作者: Zhihua Cai,Xiaobo Liu,Yaoming Cai
DOI:10.1109/tgrs.2019.2951433

Visual Saliency-Based Extended Morphological Profiles for Unsupervised Feature Learning of Hyperspectral Images

期刊: IEEE Geoscience and Remote Sensing Letters  2020
作者: Bo Huang,Zhihua Cai,Min Wang,Yaoming Cai,Xu Yin,Xiaobo Liu
DOI:10.1109/lgrs.2019.2957851

Sparse Feature Learning of Hyperspectral Imagery via Multiobjective-Based Extreme Learning Machine

Hyperspectral image (HSI) consists of hundreds of narrow spectral band components with rich spectral and spatial information. Extreme Learning Machine (ELM) has been widely used for HSI analysis. However, the classical ELM is difficult to use for sparse feature leaning due to its randomly generated hidden layer. In this paper, we propose a novel unsupervised sparse feature learning approach, called Evolutionary Multiobjective-based ELM (EMO-ELM), and apply it to HSI feature extraction. Specifically, we represent the task of constructing the ELM Autoencoder (ELM-AE) as a multiobjective optimization problem that takes the sparsity of hidden layer outputs and the reconstruction error as two conflicting objectives. Then, we adopt an Evolutionary Multiobjective Optimization (EMO) method to solve the two objectives, simultaneously. To find the best solution from the Pareto solution set and construct the best trade-off feature extractor, a curvature-based method is proposed to focus on the knee area of the Pareto solutions. Benefited from the EMO, the proposed EMO-ELM is less prone to fall into a local minimum and has fewer trainable parameters than gradient-based AEs. Experiments on two real HSIs demonstrate that the features learned by EMO-ELM not only preserve better sparsity but also achieve superior separability than many existing feature learning methods.

期刊: Sensors  2020
作者: Zhikun Chen,Xinwei Jiang,Zhihua Cai,Yaoming Cai,Xiaoping Fang
DOI:10.3390/s20051262

Graph Convolutional Subspace Clustering: A Robust Subspace Clustering Framework for Hyperspectral Image

期刊: IEEE Transactions on Geoscience and Remote Sensing  2020
作者: Qin Yan,Xinwei Jiang,Xiaobo Liu,Zhihua Cai,Zijia Zhang,Yaoming Cai
DOI:10.1109/tgrs.2020.3018135

Efficient Graph Convolutional Self-Representation for Band Selection of Hyperspectral Image

期刊: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  2020
作者: Zhihua Cai,Xiaobo Liu,Zijia Zhang,Yaoming Cai
DOI:10.1109/jstars.2020.3018229

Deep Multigrained Cascade Forest for Hyperspectral Image Classification

期刊: IEEE Transactions on Geoscience and Remote Sensing  2019
作者: Xu Yin,Yaoming Cai,Zhihua Cai,Ruilin Wang,Xiaobo Liu
DOI:10.1109/tgrs.2019.2918587

Spectral-Spatial Clustering of Hyperspectral Image Based on Laplacian Regularized Deep Subspace Clustering

期刊: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium  2019
作者: Xiang Li,Zhihua Cai,Xiaobo Liu,Yaoming Cai,Meng Zeng
DOI:10.1109/igarss.2019.8898947

Discriminative Spectral-Spatial Attention-Aware Residual Network For Hyperspectral Image Classification

期刊: 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS)  2019
作者: Guangjun Wang,Xiaobo Liu,Zhihua Cai,Zhimin Dong,Yaoming Cai
DOI:10.1109/whispers.2019.8921022

Band Selection of Hyperspectral Images Using Multiobjective Optimization-Based Sparse Self-Representation

期刊: IEEE Geoscience and Remote Sensing Letters  2019
作者: Zhihua Cai,Yaoming Cai,Xiaobo Liu,Peng Hu
DOI:10.1109/lgrs.2018.2872540

Hierarchical Ensemble of Extreme Learning Machine

期刊: Pattern Recognition Letters  2018
作者: Zhihua Cai,Yongshan Zhang,Xiaobo Liu,Yaoming Cai
DOI:10.1016/j.patrec.2018.06.015

A multiobjective optimization-based sparse extreme learning machine algorithm

期刊: Neurocomputing  2018
作者: Yaoming Cai,Zhihua Cai,Xiaobo Liu,Yongshan Zhang,Yu Wu
DOI:10.1016/j.neucom.2018.07.060

A Novel Deep Learning Approach: Stacked Evolutionary Auto-encoder

期刊: 2018 International Joint Conference on Neural Networks (IJCNN)  2018
作者: Guangjun Wang,Jia Wu,Xiaobo Liu,Meng Zeng,Zhihua Cai,Yaoming Cai
DOI:10.1109/ijcnn.2018.8489138

Extreme Learning Machine Based on Evolutionary Multi-objective Optimization

期刊: Communications in Computer and Information Science  2017
作者: Zhihua Cai,Bi Wu,Ruilin Wang,Peng Hu,Yu Wu,Xiaobo Liu,Yaoming Cai
DOI:10.1007/978-981-10-7179-9_32

主页访问量:45